The influence of hypoxia on heart rate variability (HRV) has been studied under resting conditions with mixed results. Differences have been found in physiological responses to normobaric versus hypobaric hypoxia. Our aim was to study the influence of hypobaric hypoxia on HRV during physical exercise to determine whether HRV changes due to the exercise-induced heart rate (HR) increase or whether hypoxia itself exerts an influence. We tested nine healthy non-acclimatised white males (age = 43 +/- 7 years) at 400 and 4,200 m during exercises. At 400 m HRV was measured at 50% and 75% maximal oxygen uptake (VO(2) max). At 4,200 m HR was kept equal as during exercise at 400 m by adjusting the intensity of step testing. The Poincaré plot as a non-linear method of HRV analysis was used, where the shape of the ellipse depending on HRV is expressed by two parameters, SD1 and SD2 (correlating to parasympathetic activity and both sympathetic and parasympathetic activity, respectively). We established a decrease in SD2 and an insignificant decrease in SD1 at medium HR at 4,200 m compared to 400 m. Both parameters showed similar tendencies during high-intensity exercise. Our results indicate that hypobaric hypoxia itself exerts an influence on HRV at a moderate HR.
It is generally accepted that an increase in blood CO(2) increases ventilation. We also know that during carbohydrate metabolism a larger amount of CO(2) is produced than during metabolism of lipids or proteins. The aim of the present study was therefore to assess whether carbohydrate ingestion can increase CO(2) production enough to stimulate ventilation, which could in turn increase arterial oxygenation and alleviate the symptoms of hypoxia in a hypoxic environment. Fourteen subjects participated in two trials, which consisted of two normoxic and an acute hypoxic period (F(i(O(2))) = 12.86%). Following the first control normoxic period, the subjects ingested either a 10% water solution of sucrose (CHO; 4 kcal/kg body mass) or an equal volume of water (control). Hemoglobin saturation, heart rate, and ventilation parameters were monitored throughout the experiment. In contrast to the control trial, CO(2) production (V(CO(2)); L), ventilation (V; L/min), and heart rate were all significantly (p < 0.001) increased in the CHO trial during the second normoxic exposure; these parameters were also significantly elevated during the hypoxic exposure, as compared to the control trial. Carbohydrate ingestion 40 min prior to acute hypoxic exposure significantly (p < 0.001) improved hemoglobin saturation by 4%. The results suggest that ingestion of carbohydrates can improve arterial oxygenation during acute hypoxic exposure.
BackgroundThe anti-Müllerian hormone (AMH) is a dimeric protein secreted by the female ovaries and has two fundamental roles in follicle genesis. It delays the entrance of the primordial follicle into the pool of follicles in growth and diminishes the sensitivity of the ovarian follicle towards follicle-stimulating hormone (FSH). The purpose of this work was to study the AMH (nv 2.0–6.8 ng/mL) as a marker during assisted reproductive technology (ART), in order to identify cases of infertility due to polycystic ovarian syndrome (PCOS). This syndrome affects 10% of women with infertility problems, and a new biological marker could be useful to general practitioners of internal medicine to help generate the suspicion of PCOS so that they can refer the patient to the gynecologist for confirmation.MethodsThis study enrolled 236 patients aged 26–46 years undergoing assisted reproductive technology at the Institute for Maternal and Child Health, Trieste, Italy. On the third day of the ovarian cycle, the patients were given doses of AMH, FSH, and luteinizing hormone (LH, in cases of AMH < 2.0–6.8 ng/mL). A control pelvic ultrasound was also carried out.ResultsWe identified 57 patients who were starting in vitro fertilization or embryo transfer with AMH values within the normal range (3.64 ± 1.51 ng/mL), 77 with values below normal (1.38 ± 0.32 ng/mL), and 96 cases with undetectable values of AMH. Six patients had very high AMH levels (10.0 ± 2.28 ng/mL) and, of these, five were found to have PCOS on pelvic ultrasound examination (P < 0.05). We also found inverse correlations between AMH levels and age (r = −0.52) and between AMH and FSH levels (r = −0.32).ConclusionIn clinical practice it is common to encounter patients who turn to medicine in search of a cure for female infertility. In our experience, AMH two or three times the normal amount (10 ± 2.28 ng/mL), is a good indication of PCOS and infertility.
Background Caffeine is reported to be the most widely used pharmacologically active substance. It causes mental stimulation and increases blood pressure. Acute systolic and diastolic blood pressure response to caffeine attenuates in the course of regular caffeine use; tolerance to cardiovascular responses develops in some people. For some hypertension-prone people coffee ingestion may be harmful, and for others it may be beneficial. The aim of our work was to evaluate the effect of caffeine on postocclusive reactive hyperaemia (PORH), a test of microvascular function, and at the same time to monitor the central effects of caffeine on blood pressure and heart rate. Methods Heart rate, arterial pressure, and cutaneous laser-Doppler (LD) flux were monitored in 32 healthy volunteers (aged 25.2 ± 4.3 years) before and after they ingested 200 mg of caffeine. LD flux was measured on a finger at rest and after the release of an 8-minute occlusion of digital arteries above the place of LD flux measurement. All parameters obtained after the ingestion of caffeine were compared to the values obtained before caffeine and to the values obtained after a placebo. Results We found slightly increased arterial pressure as well as decreased heart rate and resting LD flux (Dunnett’s test, p<0.05) after the ingestion of caffeine. Caffeine significantly reduced the PORH response (Dunnett’s test, p<0.01). The power of the low-frequency oscillations (0.06–0.15 Hz) of LD flux, representing vascular myogenic activity, increased significantly after the ingestion of caffeine at rest and during the PORH response. A correlation was found between the number of cups of coffee regularly consumed and resting LD flux values (R = 0.492, p = 0.00422), peak LD flux values during PORH (R = 0.458, p = 0.00847), and the PORH area (R = 0.506, p = 0.00313) after caffeine consumption. Conclusions From the results, we can conclude that caffeine affects cutaneous microvascular function during rest and during a PORH response, and that it increases blood pressure and decreases heart rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.