A; et al., (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, (468) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment Abstract Biodiversity is rapidly declining1, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes4 across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above-and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades. However, only few studies so far incorporated an explicit food-web perspective 6 . In an 8-50 year biodiversity experiment, we studied an unprecedented range of above-and 51 belowground organisms and biotic interactions. A multitrophic dataset originating from 52 a single long-term experiment allows mechanistic insights that otherwise would not be 53 possible using meta-analysis of different experiments. We show that plant diversity 54 effects dampen with increasing trophic level and degree of omnivory. This finding was 55 consistent both for abundance and species richness of organisms. Further, we present 56 comprehensive above-belowground biodiversity food webs. Both above-and 57 belowground, herbivores responded more strongly to changes in plant diversity than did 58 carnivores or omnivores. Density and richness of carnivorous taxa was independent of 59 vegetation structure. Belowground responses to plant diversity were consistently weaker 60 than aboveground responses. Responses to increasing plant diversity were generally 61 positive, but negative for biological invasion, pathogen infestation and hyperparasitism. 62Our results suggest that plant diversity exhibits stron...
Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species.
Abstract. Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-hostmulti-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen (''pathogens'' hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006.Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Abstract. Human-caused declines in biodiversity have stimulated intensive research on the consequences of biodiversity loss for ecosystem services and policy initiatives to preserve the functioning of ecosystems. Short-term biodiversity experiments have documented positive effects of plant species richness on many ecosystem functions, and longer-term studies indicate, for some ecosystem functions, that biodiversity effects can become stronger over time. Theoretically, a biodiversity effect can strengthen over time by an increasing performance of high-diversity communities, by a decreasing performance of low-diversity communities, or a combination of both processes. Which of these two mechanisms prevail, and whether the increase in the biodiversity effect over time is a general property of many functions remains currently unclear. These questions are an important knowledge gap as a continuing decline in the performance of low-diversity communities would indicate an ecosystem-service debt resulting from delayed effects of species loss on ecosystem functioning. Conversely, an increased performance of high-diversity communities over time would indicate that the benefits of biodiversity are generally underestimated in short-term studies. Analyzing 50 ecosystem variables over 11 years in the world's largest grassland biodiversity experiment, we show that overall plant diversity effects strengthened over time. Strengthening biodiversity effects were independent of the considered compartment (above-or belowground), organizational level (ecosystem variables associated with the abiotic habitat, primary producers, or higher trophic levels such as herbivores and pollinators), and variable type (measurements of pools or rates). We found evidence that biodiversity effects strengthened because of both a progressive decrease in functioning in species-poor and a progressive increase in functioning in species-rich communities. Our findings provide evidence that negative feedback effects at low biodiversity are as important for biodiversity effects as complementarity among species at high biodiversity. Finally, our results indicate that a current loss of species will result in a future impairment of ecosystem functioning, potentially decades beyond the moment of species extinction.
In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above-or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.