We investigated the effects of sprint interval training (SIT) and moderate-intensity continuous training (MICT) on glucose uptake (GU) during hyperinsulinemic euglycemic clamp and fatty acid uptake (FAU) at fasting state in thigh and arm muscles in subjects with type 2 diabetes (T2D) or prediabetes.Twenty-six patients (age 49, SD 4; 10 women) were randomly assigned into two groups: SIT (n=13) and MICT (n=13). The exercise in the SIT group consisted of 4-6×30 s of all-out cycling with 4-minute recovery and in the MICT group 40-to 60-minute cycling at 60% of VO 2peak . Both groups completed six training sessions within two weeks. GU and FAU were measured before and after the intervention with positron emission tomography in thigh (quadriceps femoris, QF; and hamstrings) and upper arm (biceps and triceps brachii) muscles.Whole-body insulin-stimulated GU increased significantly by 25% in both groups, and this was accompanied with significantly increased insulin-stimulated GU in all thigh and upper arm muscles and significantly increased FAU in QF. Within QF, insulin-stimulated GU improved more by SIT than MICT in rectus femoris (P = .01), but not differently between the training modes in the other QF muscles.In individuals with T2D or prediabetes, both SIT and MICT rapidly improve insulinstimulated GU in whole body and in the thigh and arm muscles as well as FAU in the main working muscle QF. These findings highlight the underused potential of exercise in rapidly restoring the impaired skeletal muscle metabolism in subjects with impaired glucose metabolism. K E Y W O R D Sexercise, insulin resistance, muscle metabolism
Purpose: This study aimed to investigate whether a reduction in daily sedentary behavior (SB) improves insulin sensitivity in adults with metabolic syndrome in 6 months, without adding intentional exercise training. Methods: Sixty-four sedentary inactive middle-age adults with overweight and metabolic syndrome (mean (SD) age, 58 (7) yr; mean (SD) body mass index, 31.6 (4.3) kg•m −2 ; 27 men) were randomized into intervention and control groups. The 6-month individualized behavioral intervention supported by an interactive accelerometer and a mobile application aimed at reducing daily SB by 1 h compared with baseline. Insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by air displacement plethysmography, and fasting blood samples were analyzed before and after the intervention. SB and physical activity were measured with hip-worn accelerometers throughout the intervention. Results: SB decreased by 40 (95% confidence interval, 17-65) min•d −1 , and moderate-to-vigorous physical activity increased by 20 (95% confidence interval, 11-28) min•d −1 on average in the intervention group with no significant changes in these outcomes in the control group. After 6 months, fasting plasma insulin decreased (~1 mU•L −1 ) in the intervention group compared with the control group (time-group, P = 0.0081), but insulin sensitivity did not change in either group. The changes in body mass or adiposity did not differ between groups. Among all participants, the changes in SB and body mass correlated inversely with the change in insulin sensitivity (r = −0.31, −0.44; P = 0.025, 0.0005, respectively). Conclusions: An intervention aimed at reducing daily SB resulted in slightly decreased fasting insulin, but had no effects on insulin sensitivity or body adiposity. However, as the change in insulin sensitivity associated with the changes in SB and body mass, multifaceted interventions targeting to weight loss are likely to be beneficial in improving whole-body insulin sensitivity.
The aim of this study was to examine the associations of cardiometabolic health markers with device-measured sedentary behavior (SB) duration and different intensities of physical activity (PA) among overweight working-aged adults with low self-reported PA levels. This cross-sectional analysis included 144 subjects (42 men) with mean age of 57 (SD 6.5) years and mean BMI of 31.7 (SD 4) kg/m2. SB and standing time, breaks in sedentary time, light PA (LPA) and moderate-to-vigorous PA (MVPA) were measured for 4 consecutive weeks (mean 25 days, SD 4) with hip-worn accelerometers. Fasting plasma glucose, insulin, HbA1c, triglycerides and total cholesterol, HDL and LDL were measured from venous blood samples. HOMA-IR index was calculated as a surrogate of insulin resistance. The associations were examined using linear models. LPA, MVPA, and daily steps associated with better insulin sensitivity and favorable plasma lipid profile, when adjusted for age, sex and BMI, whereas greater proportion of SB associated with insulin resistance and unfavorable lipid profile. As all PA intensities associated with better cardiometabolic health, the total daily duration of PA may be more relevant than intensity in maintaining metabolic health in overweight adults, if the current guidelines for PA are not met.Trial Registration: ClinicalTrials.gov NCT03101228, registered 05/04/2017, https://clinicaltrials.gov/show/NCT03101228.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.