The ever-increasing world energy demand drives the need for new and sustainable renewable fuel to mitigate problems associated with greenhouse gas emissions such as climate change. This helps in the development toward decarbonisation. Thus, in recent years, hydrogen has been seen as a promising candidate in global renewable energy agendas, where the production of biohydrogen gains more attention compared with fossil-based hydrogen. In this review, biohydrogen production using organic waste materials through fermentation, biophotolysis, microbial electrolysis cell and gasification are discussed and analysed from a technological perspective. The main focus herein is to summarise and criticise through bibliometric analysis and put forward the guidelines for the potential future routes of biohydrogen production from biomass and especially organic waste materials. This research review claims that substantial efforts currently and, in the future, should focus on biohydrogen production from integrated technology of processes of (i) dark and photofermentation, (ii) microbial electrolysis cell (MEC) and (iii) gasification of combined different biowastes. Furthermore, bibliometric mapping shows that hydrogen production from biomethanol and the modelling process are growing areas in the biohydrogen research that lead to zero-carbon energy soon.
Climate change and the unsustainability of fossil fuels are calling for cleaner energies such as methanol as a fuel. Methanol is one of the simplest molecules for energy storage and is utilized to generate a wide range of products. Since methanol can be produced from biomass, numerous countries could produce and utilize biomethanol. Here, we review methanol production processes, techno-economy, and environmental viability. Lignocellulosic biomass with a high cellulose and hemicellulose content is highly suitable for gasification-based biomethanol production. Compared to fossil fuels, the combustion of biomethanol reduces nitrogen oxide emissions by up to 80%, carbon dioxide emissions by up to 95%, and eliminates sulphur oxide emission. The cost and yield of biomethanol largely depend on feedstock characteristics, initial investment, and plant location. The use of biomethanol as complementary fuel with diesel, natural gas, and dimethyl ether is beneficial in terms of fuel economy, thermal efficiency, and reduction in greenhouse gas emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.