Serpentine outcrops are model habitats for geoecological studies. While much attention has been paid to serpentine outcrops worldwide, the literature on eastern North American serpentine and associated biota is scant. This review examines the available literature, published and unpublished, on geoecological studies conducted on serpentine in eastern North America, from Newfoundland through Québec and New England south to Alabama. Most serpentine outcrops in the region have been mapped, but there have been few intensive mineralogical and pedological investigations. The limited soil analyses available suggest elevated levels of heavy metals such as Ni, near-neutral pH values, and Ca:Mg ratios , 1, characteristic of serpentine soils worldwide. Botanical studies to date have largely focused on floristic surveys and the influence of fire exclusion and grazing on indigenous vegetation. To date, 751 taxa of vascular plants belonging to 92 families have been reported from serpentine outcrops in the region. Two taxa, Agalinis acuta and Schwalbea americana, are federally endangered in the United States while many others are listed as rare, endangered, or imperiled in one or more states or provinces. Globally, six species, Adiantum viridimontanum, Minuartia marcescens, Pycnanthemum torrei, S. americana, Scirpus longii, and Symphyotrichum depauperatum are listed as imperiled (G2) while one species, Agalinis acuta, is listed as critically imperiled (G1). Cerastium velutinum var. villosissimum is the only recognized serpentine endemic plant for eastern North America while Adiantum viridimontanum, Aspidotis densa, M. marcescens, and S. depauperatum are largely restricted to the substrate. Based on current distributions, we propose that A. viridimontanum and M. marcescens be considered endemic to serpentine substrates in eastern North America. Studies on cryptogams list 165 species of lichens and 146 species of bryophytes for the region. None of the species found appear to be restricted to the substrate. Compared to other regions of the world, ecophysiological and evolutionary investigations are scant. Biosystematic investigations are restricted to the taxa Adiantum aleuticum, C. velutinum var. 22Rhodora [Vol. 111 villosissimum, and S. depauperatum. Plant-soil relations, especially the capacity to hyperaccumulate metals such as Ni and the ecological consequences of metal accumulation, are also under explored. One report from eastern Canada lists Arenaria humifusa, M. marcescens, Packera paupercula, and Solidago hispida as hyperaccumulating Ni although the findings have yet to be confirmed by subsequent investigations. Overall, serpentine geoecology in eastern North America remains largely unexplored.
The serpentine-substrate effect is well documented for vascular plants, but the literature for bryophytes is limited. The majority of literature on bryophytes in extreme geoedaphic habitats focuses on the use of species as bioindicators of industrial pollution. Few attempts have been made to characterize bryophyte floras on serpentine soils derived from peridotite and other ultramafic rocks. This paper compares the bryophyte floras of both a peridotite and a granite outcrop from the Deer Isles, Hancock County, Maine, and examines tissue elemental concentrations for select species from both sites. Fifty-five species were found, 43 on serpentine, 26 on granite. Fourteen species were shared in common. Twelve species are reported for the first time from serpentine soils. Tissue analyses indicated significantly higher Mg, Ni, and Cr concentrations and significantly lower Ca:Mg ratios for serpentine mosses compared to those from granite. Soil analyses demonstrated significant differences between the two substrates.
Plants growing on seabird-nesting islands are uniquely adapted to deal with guano-derived soils high in N and P. Such ornithocoprophilous plants found in isolated, oceanic settings provide useful models for ecological and evolutionary investigations. The current study explored the plants found on Mount Desert Rock (MDR), a small seabird-nesting, oceanic island 44 km south of Mount Desert Island (MDI), Hancock County, Maine, U.S.A. Twenty-seven species of vascular plants from ten families were recorded. Analyses of guanoderived soils from the rhizosphere of the three most abundant species from birdnesting sites of MDR showed significantly higher (P , 0.05) NO 3 2 , available P, extractable Cd, Cu, Pb, and Zn, and significantly lower Mn compared to soils from the rhizosphere of conspecifics on non-bird nesting coastal bluffs from nearby MDI. Bio-available Pb was several-fold higher in guano soils than for background levels for Maine. Leaf tissue elemental analyses from conspecifics on and off guano soils showed significant differences with respect to N, Ca, K, Mg, Fe, Mn, Zn, and Pb, although trends were not always consistent. Two-way ANOVA indicated a significant interaction between species and substrate for Ca, Mg, Zn, and Pb tissue accumulation, showing that for these four elements there is substantial differentiation among species found on and off of guano soil. A compilation of species lists from other important seabird-nesting islands in the region suggested an ornithocoprophilous flora for northeastern North America consisting of 168 species from 39 families, with Asteraceae (29 taxa; 17.3%), Poaceae (25 taxa; 14.9%), Polygonaceae (10 taxa; 5.95%), Caryophyllaceae (9 taxa; 5.4%), and Rosaceae (9 taxa; 5.4%) as the most species-rich families. The taxa were predominantly hermaphroditic (69%) and perennial (66%) species, native (60%) to eastern North America.
We performed a comparative study of the vascular flora of a serpentine outcrop, Pine Hill, and that of a granite outcrop, Settlement Quarry, from Little Deer Isle and Deer Isle, respectively, Hancock County, Maine. We established four transects along a gradient from exposed to forested areas within each outcrop. Plants were recorded for presence and percent cover from circular plots along each transect. Soil and tissue samples were collected to examine soiltissue elemental relations. One hundred thirty-two taxa were recorded from serpentine and 89 from granite. Fifty-seven taxa were shared by both sites. Species richness (a diversity) and diversity indices (Shannon-Weaver and Simpson) suggested significant differences between sites and within sites. Principle Component Analysis suggested substrates differed significantly between sites and between exposures within sites. Tissue analyses suggested intraspecific variation with respect to tissue elemental concentrations, especially in Achillea millefolium, Oenothera biennis, Prunus virginiana, Selaginella rupestris, Spiraea alba var. latifolia, and Vaccinium angustifolium. Serpentine populations of many taxa showed low tissue Ca:Mg ratios (, 1) and high Ni concentrations. Two-way ANOVA showed significant substrate 3 species effects for several elements, including those that typically characterize serpentine substrates (Ca, Mg, Cr, Ni), suggesting significant genetic variation within species with respect to substrate. Finally, we compared our species list for Pine Hill with a plant survey done at Pine Hill and five additional serpentine sites of Maine in 1977 and provide a list of 285 vascular plant taxa from 62 families for serpentine in Maine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.