The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10 −8 ) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
This study is the first genetically-informed investigation of avoidant/restrictive food intake disorder (ARFID), an eating disorder that profoundly impacts quality of life for those affected. ARFID is highly comorbid with autism, and we provide the first estimate of its prevalence in a large and phenotypically diverse autism cohort (a subsample of the SPARK study, N = 5,157 probands). This estimate, 21% (at a balanced accuracy 80%), is at the upper end of previous estimates from studies based on clinical samples, suggesting under-diagnosis and potentially lack of awareness among caretakers and clinicians. Although some studies suggest a decrease of disordered eating symptoms by age 6, our estimates indicate that up to 17% (at a balanced accuracy 87%) of parents of autistic children are also at heightened risk for ARFID, suggesting a lifelong risk for disordered eating. We were also able to provide the first estimates of narrow-sense heritability (h2) for ARFID risk, at 0.45. Genome-wide association revealed a single hit near ZSWIM6, a gene previously implicated in neurodevelopmental conditions. While, the current sample was not well-powered for GWAS, effect size and heritability estimates allowed us to project the sample sizes necessary to more robustly discover ARFID-linked loci via common variants. Further genetic analysis using polygenic risk scores (PRS) affirmed genetic links to autism as well as neuroticism and metabolic syndrome.
The use of spoken and written language is a capacity that is unique to humans. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30-80%, depending on the trait. The relevant genetic architecture is complex, heterogeneous, and multifactorial, and yet to be investigated with well-powered studies. Here, we present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures: word reading, nonword reading, spelling, phoneme awareness, and nonword repetition, with total sample sizes ranging from 13,633 to 33,959 participants aged 5-26 years (12,411 to 27,180 for those with European ancestry, defined by principal component analyses). We identified a genome-wide significant association with word reading (rs11208009, p=1.098 × 10−8) independent of known loci associated with intelligence or educational attainment. All five reading-/language-related traits had robust SNP-heritability estimates (0.13–0.26), and genetic correlations between them were modest to high. Using genomic structural equation modelling, we found evidence for a shared genetic factor explaining the majority of variation in word and nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence and educational attainment. A multivariate GWAS was performed to jointly analyse word and nonword reading, spelling, and phoneme awareness, maximizing power for follow-up investigation. Genetic correlation analysis of multivariate GWAS results with neuroimaging traits identified association with cortical surface area of the banks of the left superior temporal sulcus, a brain region with known links to processing of spoken and written language. Analysis of evolutionary annotations on the lineage that led to modern humans showed enriched heritability in regions depleted of Neanderthal variants. Together, these results provide new avenues for deciphering the biological underpinnings of these uniquely human traits.
Genetics has been one of the most powerful windows into the biology of autism spectrum disorder (ASD). it is estimated that a thousand or more genes may confer risk for ASD when functionally perturbed, however, only around 100 genes currently have sufficient evidence to be considered true "autism risk genes". Massive genetic studies are currently underway producing data to implicate additional genes. This approach-although necessary-is costly and slow-moving, making identification of putative ASD risk genes with existing data vital. Here, we approach autism risk gene discovery as a machine learning problem, rather than a genetic association problem, by using genomescale data as predictors to identify new genes with similar properties to established autism risk genes. This ensemble method, forecASD, integrates brain gene expression, heterogeneous network data, and previous gene-level predictors of autism association into an ensemble classifier that yields a single score indexing evidence of each gene's involvement in the etiology of autism. We demonstrate that forecASD has substantially better performance than previous predictors of autism association in three independent trio-based sequencing studies. Studying forecASD prioritized genes, we show that forecASD is a robust indicator of a gene's involvement in ASD etiology, with diverse applications to gene discovery, differential expression analysis, eQTL prioritization, and pathway enrichment analysis. Autism Spectrum Disorder (ASD) is a heterogeneous group of developmental disorders caused by a range of genetic and environmental factors. The core diagnostic features of ASD-which manifest at a young age-are impairments in social communication and restrictive and repetitive behaviors and interests. Evidence for genetic causes of ASD is strong: monozygotic twins have near 90% concordance of ASD diagnosis 1. Population and twin studies confirmed these findings 2 and estimated ASD's narrow-sense heritability to be in the 50-95% range. While evidence of genetics's role in autism is abundant, our understanding of the specific genes underlying the disorder's etiology is still limited. It is estimated that a thousand or more genes may confer risk for ASD when functionally perturbed 3. This functional perturbation can come in a number of forms, including de novo mutation, expression quantitative trait loci (eQTL) disruption, and inheritance of damaging rare variants. Despite these projections, the existing list of high-confidence autism risk genes-depending on the source-stands closer to the 100-gene mark 3-6. This discrepancy is partly explained by the relatively limited number of genomic studies compared to the vast genetic heterogeneity underlying autism. To close the gap between anticipated and known autism risk genes, several network-biology approaches were applied in the past decade. These studies leveraged large, publicly-available datasets to add context and amplify the genetic signals observed in ASD sequencing studies. These network-biology studies predicted indi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.