Aims/hypothesis We aimed to characterise the immunogenic background of insulin-dependent diabetes in a resource-poor rural African community. The study was initiated because reports of low autoantibody prevalence and phenotypic differences from European-origin cases with type 1 diabetes have raised doubts as to the role of autoimmunity in this and similar populations. Methods A study of consecutive, unselected cases of recently diagnosed, insulin-dependent diabetes (n = 236, ≤35 years) and control participants (n = 200) was carried out in the ethnic Amhara of rural North-West Ethiopia. We assessed their demographic and socioeconomic characteristics, and measured non-fasting C-peptide, diabetes-associated autoantibodies and HLA-DRB1 alleles. Leveraging genome-wide genotyping, we performed both a principal component analysis and, given the relatively modest sample size, a provisional genome-wide association study. Type 1 diabetes genetic risk scores were calculated to compare their genetic background with known European type 1 diabetes determinants. Results Patients presented with stunted growth and low BMI, and were insulin sensitive; only 15.3% had diabetes onset at ≤15 years. C-peptide levels were low but not absent. With clinical diabetes onset at ≤15, 16–25 and 26–35 years, 86.1%, 59.7% and 50.0% were autoantibody positive, respectively. Most had autoantibodies to GAD (GADA) as a single antibody; the prevalence of positivity for autoantibodies to IA-2 (IA-2A) and ZnT8 (ZnT8A) was low in all age groups. Principal component analysis showed that the Amhara genomes were distinct from modern European and other African genomes. HLA-DRB1*03:01 (p = 0.0014) and HLA-DRB1*04 (p = 0.0001) were positively associated with this form of diabetes, while HLA-DRB1*15 was protective (p < 0.0001). The mean type 1 diabetes genetic risk score (derived from European data) was higher in patients than control participants (p = 1.60 × 10−7). Interestingly, despite the modest sample size, autoantibody-positive patients revealed evidence of association with SNPs in the well-characterised MHC region, already known to explain half of type 1 diabetes heritability in Europeans. Conclusions/interpretation The majority of patients with insulin-dependent diabetes in rural North-West Ethiopia have the immunogenetic characteristics of autoimmune type 1 diabetes. Phenotypic differences between type 1 diabetes in rural North-West Ethiopia and the industrialised world remain unexplained.
Aims/hypothesis It is important to differentiate the two major phenotypes of adult-onset diabetes, autoimmune type 1 diabetes and non-autoimmune type 2 diabetes, especially as type 1 diabetes presents in adulthood. Serum GAD65 autoantibodies (GADA) are the most sensitive biomarker for adult-onset autoimmune type 1 diabetes, but the clinical value of GADA by current standard radiobinding assays (RBA) remains questionable. The present study focused on the clinical utility of GADA differentiated by a new electrochemiluminescence (ECL) assay in patients with adult-onset diabetes. Methods Two cohorts were analysed including 771 diabetic participants, 30–70 years old, from the Action LADA study (n = 6156), and 2063 diabetic participants, 20–45 years old, from the Diabetes in Young Adults (DiYA) study. Clinical characteristics of participants, including requirement of early insulin treatment, BMI and development of multiple islet autoantibodies, were analysed according to the status of RBA-GADA and ECL-GADA, respectively, and compared between these two assays. Results GADA was the most prevalent and predominant autoantibody, >90% in both cohorts. GADA positivity by either RBA or ECL assay significantly discriminated clinical type 1 from type 2 diabetes. However, in both cohorts, participants with ECL-GADA positivity were more likely to require early insulin treatment, have multiple islet autoantibodies, and be less overweight (for all p < 0.0001). However, clinical phenotype, age at diagnosis and BMI independently improved positive predictive value (PPV) for the requirement of insulin treatment, even augmenting ECL-GADA. Participants with GADA detectable by RBA, but not confirmed by ECL, had a phenotype more similar to type 2 diabetes. These RBA-GADA positive individuals had lower affinity GADA compared with participants in which GADA was confirmed by ECL assay. Conclusions/interpretation Detection of GADA by ECL assay, given technical advantages over RBA-GADA, identified adult-onset diabetes patients at higher risk of requiring early insulin treatment, as did clinical phenotype, together allowing for more accurate clinical diagnosis and management. Graphical abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22-25 nucleotides in length), with approximately 2,500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol (LDL-C) accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease (CVD). This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Physiological plasticity enables homeostasis to be maintained in biological systems, but when such allostasis fails, then disease can develop. In a new population-based study by Rolandsson et al (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.