Manure generated by intensive livestock operations poses potential ecological risk in the form of water pollution and greenhouse gas emission. To assess the impact of biochar on coarse-textured soils under contrasting nutrient management regimes, a 55-d incubation was conducted using unplanted soil columns amended with manure, slurry, or fertilizer (plus unamended control), each with or without biochar applied at 2% soil mass (dry weight basis). Under repeated leaching, the cumulative NO emission from the columns was significantly affected by the presence of biochar ( < 0.0001), although these data were not normally distributed. Results indicated that the biochar-amended soils emitted significantly less NO than their unamended counterparts, with the exception of manure-amended soils. The presence of biochar increased the pH of column leachate by 0.08 to 1.70 and significantly decreased the cumulative amount of mineral N leached from the soil. The presence of biochar significantly increased the amount of PO-P in soil leachate, but there was no significant difference between the means for any of the amendments used on their own relative to their biochar-amended counterparts. The data demonstrate that biochar could potentially aid in the mitigation of NO emissions from certain soils and in N loss in leachate from soil amended with slurry, manure, or fertilizer used in livestock systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.