Mating signals are often directed at numerous senses and provide information about species identity, gender, receptiveness, individual identity and mate quality. Given the diversity of colourful body patterns in invertebrates, surprisingly few studies have examined the role of these visual signals in mate recognition. Here, we demonstrate the use of claw coloration as a species recognition signal in a fiddler crab (Uca mjoebergi). Furthermore, we show that distinct carapace colour patterns in Uca capricornis enable males to discriminate between their female neighbours and unfamiliar females. This is the first empirical evidence of the social importance of colour markings in fiddler crabs and the first example of visually mediated species and neighbour recognition in invertebrates other than insects.
Although the role of colour in mate choice is well known, few tests of colour vision have been based on mating behaviour. Females of the fiddler crab Uca mjoebergi have recently been shown to use claw coloration to recognize conspecific males. In this study I demonstrate that the females use colour vision for this task; preferentially approaching yellow claws over grey claws regardless of their intensity while failing to discriminate between yellow claws differing in intensity. This is one of only a handful of studies confirming the involvement of colour vision in mate choice and the first conclusive evidence in fiddler crabs.
Underlying male quality is often reflected in the condition of sexually selected traits. In fiddler crabs, male success in both intra-and interspecific interactions is highly dependent on the size of the major claw. However, males are often forced to autotomize their major claw. Claw regeneration significantly altered the structure of a males' major claw in Uca mjoebergi. We found, however, that claw regeneration did not affect signal quality. Both males and females were unable to visually distinguish a regenerated claw from an original claw. Although regenerated males were inferior fighters, males were able to compensate for this fighting disadvantage by avoiding fights with other males. Regenerated males were, however, less likely to acquire and defend high-quality territories and consequently suffered a decrease in mating success.
Neighboring territory owners are often less aggressive toward each other than to strangers ("dear enemy" effect). There is, however, little evidence for territorial defense coalitions whereby a neighbor will temporarily leave his/her own territory, enter that of a neighbor, and cooperate in repelling a conspecific intruder. This is surprising, as theoreticians have long posited the existence of such coalitions and the circumstances under which they should evolve. Here we document territorial defense coalitions in the African fiddler crab Uca annulipes, which lives in large colonies wherein each male defends a burrow and its surrounding area against neighbors and "floaters" (burrowless males). Fights between a resident and a floater sometimes involve another male who has left his territory to fight the floater challenging his neighbor. Using simple experiments, we provide the first evidence of the rules determining when territorial coalitions form. Our results support recent models that suggest that these coalitions arise from by-product mutualism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.