These findings support the hypothesis that differences in HMO composition in mother's milk are associated with infant growth and body composition. This trial was registered at clinicaltrials.gov as NCT02535637.
Rationale: Asthma and obesity often occur together in children. It is unknown whether asthma contributes to the childhood obesity epidemic.Objectives: We aimed to investigate the effects of asthma and asthma medication use on the development of childhood obesity.Methods: The primary analysis was conducted among 2,171 nonobese children who were 5-8 years of age at study enrollment in the Southern California Children's Health Study (CHS) and were followed for up to 10 years. A replication analysis was performed in an independent sample of 2,684 CHS children followed from a mean age of 9.7 to 17.8 years.Measurements and Main Results: Height and weight were measured annually to classify children into normal, overweight, and obese categories. Asthma status was ascertained by parent-or self-reported physician-diagnosed asthma.Cox proportional hazards models were fitted to assess associations of asthma history with obesity incidence during follow-up. We found that children with a diagnosis of asthma at cohort entry were at 51% increased risk of developing obesity during childhood and adolescence compared with children without asthma at baseline (hazard ratio, 1.51; 95% confidence interval, 1.08-2.10) after adjusting for confounders. Use of asthma rescue medications at cohort entry reduced the risk of developing obesity (hazard ratio, 0.57; 95% confidence interval, 0.33-0.96). In addition, the significant association between a history of asthma and an increased risk of developing obesity was replicated in an independent CHS sample.Conclusions: Children with asthma may be at higher risk of obesity. Asthma rescue medication use appeared to reduce obesity risk independent of physical activity.
Background Infant cognitive development is influenced by maternal factors that range from obesity to early feeding and breast milk composition. Animal studies suggest a role for human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), on learning and memory, yet no human studies have examined its impact on infant cognitive development relative to other HMOs and maternal factors. Objective To determine the impact of 2'FL from breast milk feeding on infant cognitive development at 24 months of age relative to maternal obesity and breast milk feeding frequency. Methods and materials Hispanic mother-infant pairs (N = 50) were recruited across the spectrum of pre-pregnancy BMI. Breast milk was collected at 1 and 6 months, and feedings/day were reported. Nineteen HMOs were analyzed using high-performance liquid chromatography, with initial interest in 2'FL. Infant cognitive development score was assessed with the Bayley-III Scale at 24 months. Linear regressions were used for prediction, and bootstrapping to determine mediation by 2'FL.
Evidence suggests that ambient air pollution (AAP) exposure may contribute to the development of obesity and type 2 diabetes. The objective of this study was to determine whether exposure to elevated concentrations of nitrogen dioxide (NO2) and particulate matter with aerodynamic diameter <2.5 (PM2.5) had adverse effects on longitudinal measures of insulin sensitivity (SI), β-cell function, and obesity in children at high risk for developing diabetes. Overweight and obese Latino children (8–15 years; n = 314) were enrolled between 2001 and 2012 from Los Angeles, CA, and followed for an average of 3.4 years (SD 3.1 years). Linear mixed-effects models were fitted to assess relationships between AAP exposure and outcomes after adjusting for covariates including body fat percent. Higher NO2 and PM2.5 were associated with a faster decline in SI and a lower SI at age 18 years, independent of adiposity. NO2 exposure negatively affected β-cell function, evidenced by a faster decline in disposition index (DI) and a lower DI at age 18 years. Higher NO2 and PM2.5 exposures over follow-up were also associated with a higher BMI at age 18 years. AAP exposure may contribute to development of type 2 diabetes through direct effects on SI and β-cell function.
Increased TRAP exposure was correlated with gut microbial taxa and fasting glucose levels. Gut microbial taxa that were correlated with TRAP partially explained the correlation between TRAP and fasting glucose levels. These results suggest that exposure to air pollutants may negatively impact metabolic health via alterations in the gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.