Opinion dynamics models are based on the implicit assumption that people can observe the opinions of others directly, and update their own opinions based on the observation. This assumption significantly reduces the complexity of the process of learning opinions, but seems to be rather unrealistic. Instead, we argue that the opinion itself is unobservable, and that people attempt to infer the opinions of others by observing and interpreting their actions. Building on the notion of Bayesian learning, we introduce an action-opinion inference model (AOI model); this model describes and predicts opinion dynamics where actions are governed by underlying opinions, and each agent changes her opinion according to her inference of others' opinions from their actions. We study di erent action-opinion relations in the framework of the AOI model, and show how opinion dynamics are determined by the relations between opinions and actions. We also show that the well-known voter model can be formulated as being a special case of the AOI model when adopting a bijective action-opinion relation. Furthermore, we show that a so-called inclusive opinion, which is congruent with more than one action (in contrast with an exclusive opinion which is only congruent with one action), plays a special role in the dynamic process of opinion spreading. Specifically, the system containing an inclusive opinion always ends up with a full consensus of an exclusive opinion that is incompatible with the inclusive opinion, or with a mixed state of other opinions, including the inclusive opinion itself. A mathematical solution is given for some simple action-opinion relations to help better understand and interpret the simulation results. Finally, the AOI model is compared with the constrained voter model and the language competition model; several avenues for further research are discussed at the end of the paper.
Current simulation practices in artificial societies typically ignore the contribution of sexuality as a driving force for the evolution of prosocial behaviours. As recent researches in biology and genetics argued, sexual attractiveness, via the method of sexual selection, can explain many aspects of the second-order social dilemma. The basic hypothesis is that altruism is a sexually attractive virtue. To introduce the hypothesis into the analysis of human altruism, we employ the concepts of altruistic punishment and the behaviour-based sexual attractiveness to develop a gender-based evolutionary model where mating preference acts as the compensation to the male punishers from females in the given public goods game. In the model, the force of sexual selection is expressed as the e ect of mating preference on altruism. The computer simulation indicates that social cohesion can be achieved by the existence of sexuality in an artificial society where the co-evolution of mating preference, altruistic punishment and cooperation exist. We then extend the model in two ways: ( ) we employ the variable size population assumption to test the invasion capacity of cooperators, and ( ) individual variation in altruistic investment is introduced to replace the average population payo function in the baseline model. The variable size population and individual variation in investment are found to have amplifying e ects on the evolution of altruism from di erent perspectives. Finally, we discuss the definition of altruism in dynamic evolutionary games, as well as the gender di erences in the formation of altruism in primitive tribes.
The growing polarization of our societies and economies has been extensively studied in various disciplines and is subject to public controversy. Yet, measuring polarization is hampered by the discrepancy between how polarization is conceptualized and measured. For instance, the notion of group, especially groups that are identified based on similarities between individuals, is key to conceptualizing polarization but is usually neglected when measuring polarization. To address the issue, this paper presents a new polarization measurement based on a grouping method called “Equal Size Binary Grouping” (ESBG) for both uni- and multi-dimensional discrete data, which satisfies a range of desired properties. Inspired by techniques of clustering, ESBG divides the population into two groups of equal sizes based on similarities between individuals, while overcoming certain theoretical and practical problems afflicting other grouping methods, such as discontinuity and contradiction of reasoning. Our new polarization measurement and the grouping method are illustrated by applying them to a two-dimensional synthetic data set. By means of a so-called “squeezing-and-moving” framework, we show that our measurement is closely related to bipolarization and could help stimulate further empirical research.
In the field of opinion dynamics, the hiding of opinions is routinely modeled as staying silent. However, staying silent is not always feasible. In situations where opinions are indirectly expressed by one's observable actions, people may however try to hide their opinions via a more complex and intelligent strategy called obfuscation, which minimizes the information disclosed to others. This study proposes a formal opinion dynamics model to study the hitherto unexplored effect of obfuscation on public opinion formation based on the recently developed Action-Opinion Inference Model. For illustration purposes, we use our model to simulate two cases with different levels of complexity, highlighting that the effect of obfuscation largely depends on the subtle relations between actions and opinions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.