SUMMARY Pdx1 is a homeobox-containing transcription factor that plays a key role in pancreatic development and adult β-cell function. In this study, we traced the fate of adult β-cells after Pdx1 deletion. As expected, β-cell-specific removal of Pdx1 resulted in severe hyperglycemia within days. Surprisingly, a large fraction of Pdx1-deleted cells rapidly acquired ultrastructural and physiological features of α-cells, indicating that a robust cellular reprogramming had occurred. Reprogrammed cells exhibited a global transcriptional shift which included de-repression of the α-cell transcription factor MafB, resulting in a transcriptional profile that closely resembled that of α-cells. These findings indicate that Pdx1 acts as a master regulator of β-cell fate by simultaneously activating genes essential for β-cell identity and repressing those associated with α-cell identity. We discuss the significance of these findings in the context of the emerging notion that loss of β-cell identity contributes to the pathogenesis of type 2 diabetes.
R package, source code, and simulation study are available at https://github.com/YinanZheng/HIMA CONTACT: lei.liu@northwestern.edu.
Biological measures of aging are important for understanding the health of an aging population, with epigenetics particularly promising. Previous studies found that tumor tissue is epigenetically older than its donors are chronologically. We examined whether blood Δage (the discrepancy between epigenetic and chronological ages) can predict cancer incidence or mortality, thus assessing its potential as a cancer biomarker. In a prospective cohort, Δage and its rate of change over time were calculated in 834 blood leukocyte samples collected from 442 participants free of cancer at blood draw. About 3–5 years before cancer onset or death, Δage was associated with cancer risks in a dose-responsive manner (P = 0.02) and a one-year increase in Δage was associated with cancer incidence (HR: 1.06, 95% CI: 1.02–1.10) and mortality (HR: 1.17, 95% CI: 1.07–1.28). Participants with smaller Δage and decelerated epigenetic aging over time had the lowest risks of cancer incidence (P = 0.003) and mortality (P = 0.02). Δage was associated with cancer incidence in a ‘J-shaped’ manner for subjects examined pre-2003, and with cancer mortality in a time-varying manner. We conclude that blood epigenetic age may mirror epigenetic abnormalities related to cancer development, potentially serving as a minimally invasive biomarker for cancer early detection.
BACKGROUND & AIMS The Hippo signaling pathway is a context-dependent regulator of cell proliferation, differentiation, and apoptosis in species ranging from Drosophila to humans. In this study, we investigated the role of the core Hippo kinases—Mst1 and Mst2—in pancreatic development and homeostasis. METHODS We used a Cre/LoxP system to create mice with pancreas-specific disruptions in Mst1 and Mst2 (Pdx1-Cre;Mst1−/−;Mst2fl/fl mice), the mammalian orthologs of Drosophila Hippo. We used a transgenic approach to overexpress Yap, the downstream mediator of Hippo signaling, in the developing pancreas of mice. RESULTS Contrary to expectations, the pancreatic mass of Pdx1-Cre;Mst1−/−;Mst2fl/fl mice was reduced compared with wild-type mice, largely because of postnatal de-differentiation of acinar cells into duct-like cells. Development of this phenotype coincided with postnatal reactivation of YAP expression. Ectopic expression of YAP during the secondary transition (a stage at which YAP is normally absent) blocked differentiation of the endocrine and exocrine compartments, whereas loss of a single Yap allele reduced acinar de-differentiation. The phenotype of Pdx1-Cre;Mst1−/−;Mst2fl/fl mice recapitulated cellular and molecular changes observed during chemical-induced pancreatitis in mice. CONCLUSIONS The mammalian Hippo kinases, and YAP, maintain postnatal pancreatic acinar differentiation in mice.
The aim of this study was to construct nomograms to predict long‐term overall survival (OS) and tongue cancer‐specific survival (TCSS) of tongue squamous cell carcinoma (TSCC) patients based on clinical and tumor characteristics. Clinical, tumor, and treatment characteristics of 12,674 patients diagnosed with TSCC between 2004 and 2013 were collected from the Surveillance, Epidemiology, and End Results database. These patients were then divided into surgery and nonsurgery cohorts, and nomograms were developed for each of these groups. The step‐down method and cumulative incidence function were used for model selection to determine the significant prognostic factors associated with OS and TCSS. These prognostic variables were incorporated into nomograms. An external cohort was used to validate the surgery nomograms. Seven variables were used to create the surgery nomograms for OS and TCSS, which had c‐indexes of 0.709 and 0.728, respectively; for the external validation cohort, the c‐indexes were 0.691 and 0.711, respectively. Nine variables were used to create the nonsurgery nomograms for OS and TCSS, which had c‐indexes of 0.750 and 0.754, respectively. The calibration curves of the 5‐ and 8‐year surgery and nonsurgery nomograms showed excellent agreement between the probabilities and observed values. By incorporating clinicopathological and host characteristics in patients, we are the first to establish nomograms that accurately predict prognosis for individual patients with TSCC. These nomograms ought to provide more personalized and reliable prognostic information, and improve clinical decision‐making for TSCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.