Ginger has been demonstrated to improve lipid derangements. However, its underlying triglyceride-lowering mechanisms remain unclear. Fructose overconsumption is associated with increase in hepatic de novo lipogenesis, thereby resulting in lipid derangements. Here we found that coadministration of the alcoholic extract of ginger (50 mg/kg/day, oral gavage, once daily) over 5 weeks reversed liquid fructose-induced increase in plasma triglyceride and glucose concentrations and hepatic triglyceride content in rats. Plasma nonesterified fatty acid concentration was also decreased. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in ginger-treated rats. However, ginger treatment did not affect chow intake and body weight. Further, ginger treatment suppressed fructose-stimulated overexpression of carbohydrate response element-binding protein (ChREBP) at the mRNA and protein levels in the liver. Consequently, hepatic expression of the ChREBP-targeted lipogenic genes responsible for fatty acid biosynthesis was also downregulated. In contrast, expression of neither peroxisome proliferator-activated receptor- (PPAR-) alpha and its downstream genes, nor PPAR-gamma and sterol regulatory element-binding protein 1c was altered. Thus the present findings suggest that in rats, amelioration of fructose-induced fatty liver and hypertriglyceridemia by ginger treatment involves modulation of the hepatic ChREBP-mediated pathway.
Abnormal angiogenesis plays a pathological role in diabetic nephropathy (DN), contributing to glomerular hypertrophy and microalbuminuria. Slit2/Robo1 signaling participates in angiogenesis in some pathological contexts, but whether it is involved in glomerular abnormal angiogenesis of early DN is unclear. The present study evaluated the effects of Slit2/Robo1 signaling pathway on angiogenesis of human renal glomerular endothelial cells (HRGECs) exposed to a diabetic-like environment or recombinant Slit2-N. To remove the effect of Slit2 derived from mesangial cells, human renal mesangial cells (HRMCs) grown in high glucose (HG) medium (33 mM) were transfected with Slit2 siRNA and then the HG-HRMCs-CM with Slit2 depletion was collected after 48 h. HRGECs were cultured in the HG-HRMCs-CM or recombinant Slit2-N for 0, 6, 12, 24, or 48 h. The mRNA and protein expressions of Slit2/Robo1, PI3K/Akt and HIF-1α/VEGF signaling pathways were detected by quantitative real-time PCR, western blotting, and ELISA, respectively. The CCK-8 cell proliferation assay, flow cytometry and the scratch wound-healing assay were used to assess cell proliferation, cycles, and migration, respectively. Matrigel was used to perform a tubule formation assay. Our results showed that the HG-HRMCs-CM with Slit2 depletion enhanced the activation of Slit2/Robo1, PI3K/Akt, and HIF-1α/VEGF signaling in HRGECs in time-dependent manner (0-24 h post-treatment). In addition, the HG-HRMCs-CM with Slit2 depletion significantly promoted HRGECs proliferation, migration, and tube formation. Pretreatment of HRGECs with Robo1 siRNA suppressed the activation of PI3K/Akt and HIF-1α/VEGF signaling and inhibited angiogenesis, whereas PI3K inhibitor suppressed HIF-1α/VEGF signaling, without influencing Robo1 expression. In the HRGECs treated with Slit2-N, Slit2-N time-dependently enhanced the activation of Robo1/PI3K/Akt/VEGF pathway but not HIF-1α activity, and promoted HRGECs proliferation, migration, and tube formation. The effects induced by Slit2 were also abolished by Robo1 siRNA and PI3K inhibitor. Taken together, our findings indicate that in a diabetic-like environment, in addition to mesangial cells, autocrine activation of Slit2/Robo1 signaling of HRGECs may contribute to angiogenesis of HRGECs through PI3K/Akt/VEGF pathway; therefore, Slit2/Robo1 signaling may be a potent therapeutic target for the treatment of abnormal angiogenesis in early DN and may have broad implications for the treatment of other diseases dependent on pathologic angiogenesis.
Oxidative stress and inflammation play important roles in the pathogenesis of cardiovascular disease (CVD). Oxidative stress‐induced desialylation is considered to be a primary step in atherogenic modification, and therefore, the attenuation of oxidative stress and/or inflammatory reactions may ameliorate CVD. In this study, quercetin 7‐O‐sialic acid (QA) was synthesized aiming to put together the cardiovascular protective effect of quercetin and the recently reported anti‐oxidant and anti‐atherosclerosis functions of N‐acetylneuraminic acid. The biological efficacy of QA was evaluated in vitro in various cellular models. The results demonstrated that 50 μM QA could effectively protect human umbilical vein endothelial cells (HUVEC, EA.hy926) against hydrogen peroxide‐ or oxidized low‐density lipoprotein‐induced oxidative damage by reducing the production of reactive oxygen species. QA attenuated hydrogen peroxide‐induced desialylation of HUVEC and lipoproteins. QA decreased lipopolysaccharide‐induced secretion of tumour necrosis factor‐α (TNF‐α) and monocyte chemoattractant protein‐1 (MCP‐1), and it significantly reduced the expression of intercellular adhesion molecule‐1, vascular cell adhesion molecule‐1, TNF‐α and MCP‐1. Furthermore, QA effectively promoted cholesterol efflux from Raw 264.7 macrophages to apolipoprotein A‐1 and high‐density lipoprotein by up‐regulating ATP‐binding cassette transporter A1 and G1, respectively. Results indicated that the novel compound QA exhibited a better capacity than quercetin for anti‐oxidation, anti‐inflammation, cholesterol efflux promotion and biomolecule protection against desialylation and therefore could be a candidate compound for the prevention or treatment of CVD.
Abstract.One of the visions of Grid computing is to access computational resources automatically on demand to deliver the services required with appropriate quality. Because mobile devices are now increasingly common, an infrastructure is required to allow mobile devices to use Grid services, and thus enable the execution of complex resource-intensive applications on the resource-constrained devices. We present a system infrastructure that allows local mobile devices to interact with the Grid. Central to this infrastructure is a proxy with the ability of dual connectivity to transfer the request from the mobile device to the Grid. This system infrastructure combines the mobility of mobile devices with the processing power of the Grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.