Diabetic neuropathic pain (DNP), one of the early symptoms of diabetic neuropathy, relates to metabolic disorders induced by high blood glucose, neurotrophic vascular ischemia and hypoxia, and autoimmune factors. This study was aimed at exploring the effects of long noncoding RNA (lncRNA) BC168687 siRNA on DNP mediated by P2X7 receptor on SGCs in DRG of rats. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats, the expression levels of P2X7 mRNA and protein in the DRG, and nitric oxide (NO) in the serum were, respectively, detected in our study. Our experimental results showed that the level of BC168687 mRNA in DNP group was markedly higher than that of control group; the MWT and TWL of DNP + BC168687 si group were significantly increased, and the expression levels of P2X7 in DRG and the concentrations of NO in serum of DNP + BC168687 si group were decreased compared to those of the DNP group. In conclusion, lncRNA BC168687 may participate in the pathogenesis of DNP mediated by P2X7 receptor, which will provide a novel way for the study of the pathogenesis of diabetes mellitus complicated with neuropathic pain and its prevention and treatment.
Reversal of the attenuated SNrGABA−STNGlu projection mitigates pain-related behaviors in acute and chronic inflammatory pain and neuropathic pain states.
The basal ganglia including the subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) are involved in pain-related responses, but how they regulate pain processing remains unknown. Here, we identify a pathway, consisting of GABAergic neurons in the SNr (SNrGABA) and glutamatergic neurons in the STN (STNGlu) and the lateral parabrachial nucleus (LPBGlu), that modulates acute and persistent pain states in both male and female mice. The activity of STN neurons was enhanced in acute and persistent pain states. This enhancement was accompanied by hypoactivity in SNrGABA neurons and strengthening of the STN–LPB glutamatergic projection. Reversing the dysfunction in the SNrGABA-STNGlu-LPBGlu pathway attenuated activity of LPBGlu neurons and mitigated pain-like behaviors. Therefore, the SNrGABA-STNGlu-LPBGlu pathway regulates pathological pain and is a potential target for pain management.
Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.