Ferroptosis has recently emerged as an iron-dependent form of nonapoptotic cell death, which is also a regulated necrosis process and a response to tumor suppression. However, whether ferroptosis is involved in ulcerative colitis (UC) is unknown. The aims of this study were to investigate whether the ferroptosis is involved in UC, particularly intestinal epithelial cell (IEC) death, and to analyze the effect of the nuclear factor kappa Bp65 subunit (NF-κBp65) on ferroptosis. The gene expression of ferroptosis-related proteins was assessed in intestinal mucosal samples from human UC. The experimental model of UC was induced with dextran sulfate sodium (DSS). Ferroptosis of IECs was evaluated, the effect of NF-κBp65 on ferroptosis was analyzed by using IEC-specific NF-κBp65-deleted mice (p65 IEC-KO), and the ferroptosis signaling pathway was investigated in vitro and in vivo. The results showed that ferroptosis was significantly induced in the IECs from UC patients and mice with colitis, and the ferroptosis was mediated by endoplasmic reticulum (ER) stress signaling. The specific deletion of IEC NF-κBp65 clearly upregulated ferroptosis and exacerbated colitis, and the result showed that phosphorylated-NF-κBp65 significantly inhibited ER stress signaling by directly binding eukaryotic initiation factor 2α. These data indicate that ferroptosis contributes to UC via ER stressmediated IEC cell death, and that NF-κBp65 phosphorylation suppresses ER stress-mediated IEC ferroptosis to alleviate UC. The results suggest that ferroptosis involves in IEC death in UC, NF-κBp65 play a critical role in the ferroptotic inhibition, and ferroptosis is a potential therapeutic target for UC.
Despite favorable responses of chimeric antigen receptor (CAR)-engineered T-cell therapy in patients with hematologic malignancies, the outcome has been far from satisfactory in the treatment of solid tumors, partially owing to the development of an immunosuppressive tumor microenvironment. To overcome this limitation, we engineered CAR T cells secreting checkpoint inhibitors (CPI) targeting PD-1 (CAR.αPD1-T) and evaluated their efficacy in a human lung carcinoma xenograft mouse model. To evaluate the effector function and expansion capacity of CAR.αPD1-T cells , we measured the production of IFNγ and T-cell proliferation following antigen-specific stimulation. Furthermore, the antitumor efficacy of CAR.αPD1-T cells, CAR T cells, and CAR T cells combined with anti-PD-1 antibody was determined using a xenograft mouse model. Finally, the underlying mechanism was investigated by analyzing the expansion and functional capacity of TILs. Human anti-PD-1 CPIs secreted by CAR.αPD1-T cells efficiently bound to PD-1 and reversed the inhibitory effect of PD-1/PD-L1 interaction on T-cell function. PD-1 blockade by continuously secreted anti-PD-1 attenuated the inhibitory T-cell signaling and enhanced T-cell expansion and effector function both and In the xenograft mouse model, we demonstrated that the secretion of anti-PD-1 enhanced the antitumor activity of CAR T cells and prolonged overall survival. With constitutive anti-PD-1 secretion, CAR.αPD1-T cells are more functional and expandable, and more efficient at tumor eradication than parental CAR T cells. Collectively, our study presents an important and novel strategy that enables CAR T cells to achieve better antitumor immunity, especially in the treatment of solid tumors. .
Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets.
G-protein-coupled receptors (GPCR) constitute the largest known superfamily for signal transduction and transmission, and they control a variety of physiological and pathological processes. GPCR adaptor b-arrestins (ARRBs) play a role in cancerous proliferation. However, the effect of ARRBs in inflammation-mediated hepatocellular carcinogenesis is unknown. Here we show that ARRB1, but not ARRB2, is upregulated in inflammation-associated hepatocellular carcinoma (HCC) and paracancerous tissues in humans. A genotoxic carcinogen, diethylnitrosamine (DEN), significantly induces hepatic inflammation, TNF-a production and ARRB1 expression. Although ARRB1 deficiency does not affect hepatic inflammation and TNF-a production, it markedly represses hepatocellular carcinogenesis by suppressing malignant proliferation in DEN-treated mice. Furthermore, TNF-a directly induces hepatic ARRB1 expression and enhances ARRB1 interaction with Akt by binding to boost Akt phosphorylation, resulting in malignant proliferation of liver cells. Our data suggest that ARRB1 enhances hepatocellular carcinogenesis by inflammation-mediated Akt signalling and that ARRB1 may be a potential therapeutic target for HCC.
Epithelial-mesenchymal transition (EMT) is closely associated with the development of drug resistance. Lipid metabolism plays an important role in EMT. This work was to study the cholesterol-lowering drug simvastatin for reversing EMT-associated resistance to chemotherapy via lipid metabolism.Methods: The combination of simvastatin and paclitaxel was used to overcome the EMT-associated drug resistance. For dual-action on both cancer cells and tumor-associated macrophages (TAM), the tumor microenvironment-activatable multifunctional liposomes were developed for drug codelivery. The liposomes were modified with a hairpin-structured, activatable cell-penetrating peptide that is specifically responsive to the tumor-associated protease legumain.Results: It was revealed simvastatin can disrupt lipid rafts (cholesterol-rich domains) and suppress integrin-β3 and focal adhesion formation, thus inhibiting FAK signaling pathway and re-sensitizing the drug-resistant cancer cells to paclitaxel. Furthermore, simvastatin was able to re-polarize tumor-associated macrophages (TAM), promoting M2-to-M1 phenotype switch via cholesterol-associated LXR/ABCA1 regulation. The repolarization increased TNF-α, but attenuated TGF-β, which, in turn, remodeled the tumor microenvironment and suppressed EMT. The liposomal formulation achieved enhanced treatment efficacy.Conclusion: This study provides a promising simvastatin-based nanomedicine strategy targeting cholesterol metabolism to reverse EMT and repolarize TAM to treat drug-resistant cancer. The elucidation of the molecular pathways (cholesterol/lipid raft/integrin β3/FAK and cholesterol-associated LXR/ABCA1 regulation) for anti-EMT and the new application of simvastatin should be of clinical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.