During dermal injury and the associated trauma a number of compounds are released that can mediate the inflammatory response. Determining the cellular mechanisms that initiate the inflammatory responses to acute keratinocyte damage is important for understanding the regulation of epidermal inflammation. The recently cloned vanilloid receptor-1 (VR1) is a polymodal receptor, responding to thermal, pH, or vanilloids such as capsaicin stimulation. Although VR1 has been localized only on sensory neurons and within the central nervous system, recent evidence suggests a functional VR1 is expressed in human skin and epidermal cells. Using reverse transcriptionpolymerase chain reaction and immunoblotting we report that human keratinocytes and the human keratinocyte cell line HaCaT express VR1. Consistent with neuronal VR1, activation of epidermal VR1 by capsaicin induced a calcium influx. TreatingHaCaT cells with capsaicin resulted in a dose-dependent expression of cyclooxygenase-2 (COX-2), whereas pretreatment with the VR1 receptor antagonist capsazepine abolished the capsaicin-stimulated increase in COX-2 expression. Furthermore, the capsaicin-induced expression of COX-2 was dependent on extracellular calcium. Activation of the epidermal VR1 by capsaicin also resulted in an increased release of interleukin-8 and prostaglandin E 2 , and the stimulated release was attenuated by capsazepine. The finding that VR1 is expressed by keratinocytes is of great importance because it expands the putative role of VR1 beyond that of pain perception. Our results suggest that VR1 expression in keratinocytes may have a role in the inflammation that occurs secondary to epidermal damage or insult, and thus may function as a sensor for noxious cutaneous stimulation.
Most chemotherapeutic agents exert their cytotoxic effects in part through the induction of apoptosis. In addition, many chemotherapeutic agents are potent pro-oxidative stressors. Although the lipid mediator platelet-activating factor (PAF) is synthesized in response to oxidative stress, and many epidermal carcinomas express PAF receptors, it is not known whether PAF is involved in chemotherapeutic agent-induced apoptosis. These studies examined the role of the PAF system in chemotherapy-mediated cytotoxicity using model systems created by retroviral mediated transduction of the PAF receptor-negative human epidermal carcinoma cell line KB with the human PAF receptor (PAF-R) and ablation of the endogenous PAF-R in the carcinoma cell line HaCaT with a retroviral mediated inducible antisense PAF-R vector. The presence of the PAF-R in these models resulted in an augmentation of apoptosis induced by chemotherapeutic agents etoposide and mitomycin C but not by tumor necrosis factorrelated apoptosis-inducing ligand or by C 2 ceramide. Oxidative stress and the transcription factor nuclear factor B (NF-B) are found to be involved in this augmentative effect because it was blocked by antioxidants and inhibition of the NF-B pathway using a superrepressor form of inhibitor B. These studies provide evidence for a novel pathway whereby the epidermal PAF-R can augment chemotherapy-induced apoptotic effects through an NF-B-dependent process.
Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults.
In addition to their known cytotoxic effects, chemotherapeutic agents can trigger cytokine production in tumor cells. Moreover, many chemotherapeutic agents are potent pro-oxidative stressors. Although the lipid mediator platelet-activating factor (PAF) is synthesized in response to oxidative stress, and many epidermal carcinomas express PAF receptors (PAF-R) linked to cytokine production, it is not known whether PAF is involved in chemotherapeutic agent-induced cytokine production. These studies examined the role of the PAF system in chemotherapy-mediated cytokine production using a model system created by retroviral-mediated transduction of the PAF-R-negative human epidermal carcinoma cell line KB with the human PAF-R. The presence of the PAF-R in KB cells resulted in augmentation of the production of cytokines IL-8 and TNF-α induced by the chemotherapeutic agents etoposide and mitomycin C. These effects were specific for the PAF-R, as expression of the G protein-coupled receptor for fMLP did not affect chemotherapeutic agent-induced cytokine production. Moreover, ablation of the native PAF-R in the epithelial cell line HaCaT using an inducible antisense PAF-R strategy inhibited etoposide-induced cytokine production. Oxidative stress and the transcription factor NF-κB were found to be involved in this augmentative effect, because it was mimicked by the oxidant tert-butyl-hydroperoxide, which was blocked both by antioxidants and by inhibition of the NFκB pathway using a super-repressor IκBM mutant. These studies provide evidence for a novel pathway by which the epidermal PAF-R can augment chemotherapy-induced cytokine production through an NF-κB-dependent process.
As percentages of elderly people rise in many societies, age‐related diseases have become more prevalent than ever. Research interests have been shifting to delaying age‐related diseases by delaying or reversing aging itself. We use metformin as an entry point to talk about the important molecular and genetic longevity‐regulating mechanisms that have been extensively studied with it. Then we review a number of observational studies, animal studies, and clinical trials to reflect the clinical potentials of the mechanisms in lifespan extension, cardiovascular diseases, tumors, and neurodegeneration. Finally, we highlight remaining concerns that are related to metformin and future anti‐aging research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.