The third complement component (C3) is an acute phase protein that plays a central role in reperfusion injury in several organ models. To investigate the contribution of local synthesis of C3 and distinguish it from that of circulating complement mainly produced by hepatic synthesis, we employed a mouse renal isograft model. Our model demonstrated a close relationship between the extent of intrarenal expression of C3 and cold-ischemia induced injury. Ischemic C3-positive donor kidneys transplanted into C3-positive or C3-negative recipients developed widespread tissue damage and severe acute renal failure. In contrast, ischemic C3-negative isografts exhibited only mild degrees of functional and structural disturbance, even when transplanted into normal C3-positive recipients. Thus local synthesis of C3, mostly identified in the tubular epithelium, was essential for complement-mediated reperfusion damage, whereas circulating C3 had a negligible effect. Our results suggest a two-compartment model for the pathogenic function of C3, in which the extravascular compartment is the domain of local synthesis of C3, and where the role of circulating C3 is redundant. Our data cast new light on the mechanism of complement-mediated tissue injury in nonimmunological disorders, and challenges the longstanding dogma that circulating components are the main complement effectors of extravascular tissue damage.
The inflammatory kidney disease membranoproliferative glomerulonephritis type II (MPGN2) is associated with dysregulation of the alternative pathway of complement activation. MPGN2 is characterized by the presence of complement C3 along the glomerular basement membrane (GBM). Spontaneous activation of C3 through the alternative pathway is regulated by 2 plasma proteins, factor H and factor I. Deficiency of either of these regulators results in uncontrolled C3 activation, although the breakdown of activated C3 is dependent on factor I. Deficiency of factor H, but not factor I, is associated with MPGN2 in humans, pigs, and mice. To explain this discordance, mice with single or combined deficiencies of these factors were studied. MPGN2 did not develop in mice with combined factor H and I deficiency or in mice deficient in factor I alone. However, administration of a source of factor I to mice with combined factor H and factor I deficiency triggered both activated C3 fragments in plasma and GBM C3 deposition. Mouse renal transplant studies demonstrated that C3 deposited along the GBM was derived from plasma. Together, these findings provide what we believe to be the first evidence that factor I-mediated generation of activated C3 fragments in the circulation is a critical determinant for the development of MPGN2 associated with factor H deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.