Light-absorbing organic molecules are useful components in photocatalysts, but it is difficult to formulate reliable structure-property design rules. More than 100 million unique chemical compounds are documented in the PubChem...
Background:
The side effects of drugs are not only harmful to humans but also the major
reasons for withdrawing approved drugs, bringing greater risks for pharmaceutical companies.
However, detecting the side effects for a given drug via traditional experiments is time- consuming
and expensive. In recent years, several computational methods have been proposed to predict the
side effects of drugs. However, most of the methods cannot effectively integrate the heterogeneous
properties of drugs.
Methods:
In this study, we adopted a network embedding method, Mashup, to extract essential and
informative drug features from several drug heterogeneous networks, representing different properties
of drugs. For side effects, a network was also built, from where side effect features were extracted.
These features can capture essential information about drugs and side effects in a network
level. Drug and side effect features were combined together to represent each pair of drug and side
effect, which was deemed as a sample in this study. Furthermore, they were fed into a random forest
(RF) algorithm to construct the prediction model, called the RF network model.
Results:
The RF network model was evaluated by several tests. The average of Matthews correlation
coefficients on the balanced and unbalanced datasets was 0.640 and 0.641, respectively.
Conclusion:
The RF network model was superior to the models incorporating other machine
learning algorithms and one previous model. Finally, we also investigated the influence of two feature
dimension parameters on the RF network model and found that our model was not very sensitive
to these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.