b-FeOOH nanorods with a tunnel-type structure were synthesized via a hydrothermal method at low temperature and characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA) and galvanostatic tests. From TEM bright-field images, a rodlike morphology with an average diameter of 30 ¡ 5 nm and an average length of 400 nm (aspect ratio # 13) is observed. Electrochemical tests show that thesew nanorods deliver a large discharge capacity of 275 mA h g 21 vs. Li metal at 0.1 mA cm 22 (voltage window 1.5-4.2 V). a-Fe 2 O 3 nanorods with a regular pore structure were obtained by calcining the as-synthesized FeOOH at 520 uC.
BackgroundThe cellular responses of bacteria to superoxide stress can be used to model adaptation to severe environmental changes. Superoxide stress promotes the excessive production of reactive oxygen species (ROS) that have detrimental effects on cell metabolic and other physiological activities. To antagonize such effects, the cell needs to regulate a range of metabolic reactions in a coordinated way, so that coherent metabolic responses are generated by the cellular metabolic reaction network as a whole. In the present study, we have used a quantitative metabolic flux analysis approach, together with measurement of gene expression and activity of key enzymes, to investigate changes in central carbon metabolism that occur in Escherichia coli in response to paraquat-induced superoxide stress. The cellular regulatory mechanisms involved in the observed global flux changes are discussed.ResultsFlux analysis based on nuclear magnetic resonance (NMR) and mass spectroscopy (MS) measurements and computation provided quantitative results on the metabolic fluxes redistribution of the E. coli central carbon network under paraquat-induced oxidative stress. The metabolic fluxes of the glycolytic pathway were redirected to the pentose phosphate pathway (PP pathway). The production of acetate increased significantly, the fluxes associated with the TCA cycle decreased, and the fluxes in the glyoxylate shunt increased in response to oxidative stress. These global flux changes resulted in an increased ratio of NADPH:NADH and in the accumulation of α-ketoglutarate.ConclusionsMetabolic flux analysis provided a quantitative and global picture of responses of the E. coli central carbon metabolic network to oxidative stress. Systematic adjustments of cellular physiological state clearly occurred in response to changes in metabolic fluxes induced by oxidative stress. Quantitative flux analysis therefore could reveal the physiological state of the cell at the systems level and is a useful complement to molecular systems approaches, such as proteomics and transcription analyses.
Graphene consists of two-dimensional sp2-bonded carbon sheets, a single or a few layers thick, which has attracted considerable interest in recent years due to its good conductivity and biocompatibility. Three-dimensional graphene foam (3DG) has been demonstrated to be a robust scaffold for culturing neural stem cells (NSCs) in vitro that not only supports NSCs growth, but also maintains cells in a more active proliferative state than 2D graphene films and ordinary glass. In addition, 3DG can enhance NSCs differentiation into astrocytes and especially neurons. However, the underlying mechanisms behind 3DG's effects are still poorly understood. Metabolism is the fundamental characteristic of life and provides substances for building and powering the cell. Metabolic activity is tightly tied with the proliferation, differentiation, and self-renewal of stem cells. This study focused on the metabolic reconfiguration of stem cells induced by culturing on 3DG. This study established the correlation between metabolic reconfiguration metabolomics with NSCs cell proliferation rate on different scaffold. Several metabolic processes have been uncovered in association with the proliferation change of NSCs. Especially, culturing on 3DG triggered pathways that increased amino acid incorporation and enhanced glucose metabolism. These data suggested a potential association between graphene and pathways involved in Parkinson's disease. Our work provides a very useful starting point for further studies of NSC fate determination on 3DG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.