Hybrid MHD-gyrokinetic code simulations are used to investigate the dynamics of frequency sweeping reversed shear Alfvén eigenmode (RSAE) strongly driven by energetic particles (EPs) during plasma current ramp-up in a conventional tokamak configuration. A series of weakly reversed shear equilibria representing time slices of long timescale MHD equilibrium evolution is considered, where the self-consistent RSAE-EP resonant interactions on the short timescale are analyzed in detail. Both linear and non-linear RSAE dynamics are shown to be subject to the non-perturbative effect of EPs by maximizing wave-EP power transfer. In the linear stage, EPs induce evident mode structure and frequency shifts; meanwhile, RSAE saturates by radial decoupling with resonant EPs due to weak magnetic shear, and gives rise to global EP convective transport and fast frequency chirping in the non-adiabatic regime. The spatiotemporal scales of phase space wave-EP interactions are characterized by the perpendicular wavelength and wave-particle trapping time. The simulations provide insights into general as well as specific features of the RSAE spectra and EP transport in experimental observations, and illustrate the fundamental physics of wave-EP resonant interaction with the interplay of the magnetic geometry, plasma non-uniformity and non-perturbative EPs. Possible application for understanding the non-adiabatic frequency chirping as convective and relaxation branches is also discussed.
A novel channel for fuel ions heating in tokamak core plasma is proposed and analyzed using nonlinear gyrokinetic theory. The channel is achieved via spontaneous decay of reversed shear Alfvén eigenmode (RSAE) into low frequency Alfvén modes (LFAM), which then heat fuel ions via collisionless ion Landau damping. The conditions for RSAE spontaneous decay are investigated, and the saturation level and the consequent fuel ion heating rate are also derived. The channel is expected to be crucial for future reactors operating under reversed shear configurations, where fusion alpha particles are generated in the tokamak core with the magnetic shear being, typically, reversed, and there is a dense RSAE spectrum due to the small alpha particle characteristic dimensionless orbits.
Toroidal Alfvén eigenmodes (TAEs) associated with runaway electrons are observed in low density EAST Ohmic discharges (X. Zhu et al. Phys. Plasmas 29 062504), which motivate the present work to explore the possible destabilization mechanism by simplified hybrid MHD-kinetic simulations. We show that the barely circulating energetic electrons could satisfy the resonance condition with the TAE, mainly due to vanishing transit frequency near the phase space circulating/trapped separatrix. In addition, the nonlinear saturation study suggests that the phase space resonance structure plays an important role on the eventual saturation amplitude, where low toroidal mode number is favored in this scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.