This article describes GaN/AlN heterostructures for ultraviolet-C (UVC) emitters with multiple (up to 400 periods) two-dimensional (2D)-quantum disk/quantum well structures with the same GaN nominal thicknesses of 1.5 and 16 ML-thick AlN barrier layers, which were grown by plasma-assisted molecular-beam epitaxy in a wide range of gallium and activated nitrogen flux ratios (Ga/N2*) on c-sapphire substrates. An increase in the Ga/N2* ratio from 1.1 to 2.2 made it possible to change the 2D-topography of the structures due to a transition from the mixed spiral and 2D-nucleation growth to a purely spiral growth. As a result, the emission energy (wavelength) could be varied from 5.21 eV (238 nm) to 4.68 eV (265 nm) owing to the correspondingly increased carrier localization energy. Using electron-beam pumping with a maximum pulse current of 2 A at an electron energy of 12.5 keV, a maximum output optical power of 50 W was achieved for the 265 nm structure, while the structure emitting at 238 nm demonstrated a power of 10 W.
Transferred graphene provides a promising III-nitride semiconductor epitaxial platform for fabricating multifunctional devices beyond the limitation of conventional substrates. Despite its tremendous fundamental and technological importance, it remains an open question on which kind of epitaxy is preferred for single-crystal III-nitrides. Popular answers to this include the remote epitaxy where the III-nitride/graphene interface is coupled by nonchemical bonds, and the quasi-van der Waals epitaxy (quasi-vdWe) where the interface is mainly coupled by covalent bonds. Here, we show the preferred one on wet-transferred graphene is quasi-vdWe. Using aluminum nitride (AlN), a strong polar III-nitride, as an example, we demonstrate that the remote interaction from the graphene/AlN template can inhibit out-of-plane lattice inversion other than in-plane lattice twist of the nuclei, resulting in a polycrystalline AlN film. In contrast, quasi-vdWe always leads to single-crystal film. By answering this long-standing controversy, this work could facilitate the development of III-nitride semiconductor devices on two-dimensional materials such as graphene.
Thermal sublimation, a specific method to fabricate semiconductor nanowires, is an effective way to understand growth behavior as well. Utilizing a high‐resolution transmission electron microscope (TEM) with in situ heating capability, the lattice‐asymmetry‐driven anisotropic sublimation behavior is demonstrated of wurtzite GaN: sublimation preferentially occurs along the [ ] and [0001] directions in both GaN thin films and nanowires. Hexagonal pyramidal nanostructures consisting of six semipolar planes and one (000 ) plane with the apex pointing to the [0001] direction are generated as a sublimation‐induced equilibrium crystal structure, which is consistent with the lattice‐asymmetry‐driven growth behaviors in wurtzite GaN. These findings offer a new insight into the thermal stability of wurtzite GaN and provide essential background for tailoring the structure of III‐nitrides for atomic‐scale manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.