Cerebrospinal fluid (CSF) from healthy individuals contains between 1,000 and 3,000 leukocytes per ml. Little is known about trafficking patterns of leukocytes between the systemic circulation and the noninflamed CNS. In the current study, we characterized the surface phenotype of CSF cells and defined the expression of selected adhesion molecules on vasculature in the choroid plexus, the subarachnoid space surrounding the cerebral cortex, and the cerebral parenchyma. Using multicolor flow cytometry, we found that CSF cells predominantly consisted of CD4 ؉ ͞CD45RA ؊ ͞CD27 ؉ ͞ CD69 ؉ -activated central memory T cells expressing high levels of CCR7 and L-selectin. CD3 ؉ T cells were present in the choroid plexus stroma in autopsy CNS tissue sections from individuals who died without known neurological disorders. P-and E-selectin immunoreactivity was detected in large venules in the choroid plexus and subarachnoid space, but not in parenchymal microvessels. CD4 ؉ T cells in the CSF expressed high levels of P-selectin glycoprotein ligand 1, and a subpopulation of circulating CD4 ؉ T cells displayed P-selectin binding activity. Intercellular adhesion molecule 1, but not vascular cell adhesion molecule 1 or mucosal addressin cell adhesion molecule 1, was expressed in choroid plexus and subarachnoid space vessels. Based on these findings, we propose that T cells are recruited to the CSF through interactions between P-selectin͞P-selectin ligands and intercellular adhesion molecule 1͞lymphocyte function-associated antigen 1 in choroid plexus and subarachnoid space venules. These results support the overall hypothesis that activated memory T cells enter CSF directly from the systemic circulation and monitor the subarachnoid space, retaining the capacity to either initiate local immune reactions or return to secondary lymphoid organs. B etween 175,000 and 500,000 cells are present in the cerebrospinal fluid (CSF) of healthy individuals. Their functions and trafficking patterns are obscure, although it is believed that they participate in the immune defense of the CNS. Leukocytes traffic rapidly between blood and subarachnoid space (SAS), as indicated by studies in patients treated with anti-CD2 Abs, which demonstrated Ab-labeled cells in the CSF 18 h after infusion (1). The cellular composition of CSF, characterized by a predominance of lymphocytes but few erythrocytes, mononuclear phagocytes, or polymorphonuclear neutrophils, is not a simple reflection of peripheral blood (PB), suggesting a stringently regulated control over cell migration into the SAS.Despite an extensive literature delineating the formation of the fluid component of CSF, the sites of entry and exit of leukocytes to the CSF are not well characterized. Based on results of studies conducted in rodents, it has been proposed that lymphocytes migrate into the brain and spinal cord through the blood-brain barrier surrounding deep parenchymal vessels and subsequently drain into the CSF (2). This concept was challenged by a recent study using intravital microsco...
Leukocyte infiltration in the CNS after trauma or inflammation is triggered in part by upregulation of the chemokine, monocyte chemoattractant protein-1 (MCP-1), in astrocytes. However the signals that induce the upregulation of MCP-1 in astrocytes are unknown. We have investigated the roles for ATP P2X7 receptor activation because ATP is an intercellular signaling transmitter that is released in both trauma and inflammation and P2X7 receptors are involved in immune system signaling. Astrocytes in primary cell culture and acutely isolated from the hippocampus were immunopositive for P2X7 receptors. In astrocyte cultures, application of the selective P2X7 agonist, benzoyl-benzoyl ATP (Bz-ATP), activated MAP kinases extracellular signal receptor-activated kinase 1 (ERK1), ERK2, and p38. Purinergic antagonists depressed this activation with a profile suggesting P2X7 receptors. Bz-ATP also increased MCP-1 expression in cultured astrocytes, and again P2X7 antagonists prevented this increase. Blocking either the ERK1/ERK2 or the p38 pathway (with PD98059 or SB203580, respectively) significantly inhibited Bz-ATP-induced MCP-1 expression. Coapplication of both antagonists caused a greater depression. We also tested the roles for ATP receptor activation in inducing MCP-1 upregulation in corticectomy, an in vivo model of trauma. This model of cortical trauma was previously shown to increase MCP-1 expression in vivo principally in astrocytes. Suramin, a wide-spectrum purinergic receptor antagonist, significantly depressed the rapid (3 hr) trauma-induced increase in MCP-1 mRNA. These data indicate that purinergic transmitter receptors in astrocytes are important in regulating chemokine synthesis. The regulation of MCP-1 in astrocytes by ATP may be important in mediating communication with hematopoietic inflammatory cells.
The novel coronavirus disease 2019 (COVID-19) produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sweeping the world in a very short time. Although much has been learned about the clinical course, prognostic inflammatory markers, and disease complications of COVID-19, the potential interaction between SARS-CoV-2 and the thyroid is poorly understood. In contrast to SARS-CoV-1, limited available evidence indicates there is no pathological evidence of thyroid injury caused by SARS-CoV-2. However, subacute thyroiditis caused by SARS-CoV-2 has been reported for the first time. Thyroid dysfunction is common in patients with COVID-19 infection. By contrast, certain thyroid diseases may have a negative impact on the prevention and control of COVID-19. In addition, some anti–COVID-19 agents may cause thyroid injury or affect its metabolism. COVID-19 and thyroid disease may mutually aggravate the disease burden. Patients with SARS-CoV-2 infection should not ignore the effect on thyroid function, especially when there are obvious related symptoms. In addition, patients with thyroid diseases should follow specific management principles during the epidemic period.
The inflammatory response initiated after spinal cord injury (SCI) is characterized by the accumulation of macrophages at the impact site. Monocyte chemoattractant protein-1 (MCP-1) is a strong candidate for mediating chemotaxis of monocytes to the injured nervous system. To help in defining the role of MCP-1 in inflammation after SCI, we evaluated the time course of macrophage accumulation for 2 weeks following a midthoracic spinal cord contusion injury in mice lacking CCR2, a principal receptor for MCP-1. Mice with a deletion of CCR2 resulted in significantly reduced Mac-1 immunoreactivity restricted to the lesion epicenter at 7 days postinjury. The regions devoid of Mac-1 immunoreactivity corresponded to areas of reduced myelin degradation at this time. By 14 days postinjury, however, there were no differences in Mac-1 staining between CCR2 (+/+) and CCR2 (-/-) mice. Analyses of mRNA levels by RNase protection assay (RPA) revealed increases in MCP-1 as well as MCP-3 and MIP-2 mRNA at 1 day postinjury compared with 7 day postinjury. There were no differences in chemokine expression between CCR2-deficient mice and wild-type littermate controls. The CCR2-deficient mice also exhibited reduced expression of mRNA for chemokine receptors CCR1 and CCR5. Together, these results indicate that chemokines acting through CCR2 contribute to the early recruitment of monocytes to the lesion epicenter following SCI.
Understanding of dedifferentiation, an indicator of poo prognosis for patients with thyroid cancer, has been hampered by imprecise and incomplete characterization of its heterogeneity and its attributes. Using single-cell RNA sequencing, we explored the landscape of thyroid cancer at single-cell resolution with 46,205 cells and delineated its dedifferentiation process and suppressive immune microenvironment. The developmental trajectory indicated that anaplastic thyroid cancer (ATC) cells were derived from a small subset of papillary thyroid cancer (PTC) cells. Moreover, a potential functional role of CREB3L1 on ATC development was revealed by integrated analyses of copy number alteration and transcriptional regulatory network. Multiple genes in differentiation-related pathways (e.g., EMT) were involved as the downstream targets of CREB3L1, increased expression of which can thus predict higher relapse risk of PTC. Collectively, our study provided insights into the heterogeneity and molecular evolution of thyroid cancer and highlighted the potential driver role of CREB3L1 in its dedifferentiation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.