Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/platinum (Pt) catalysts (where M can be nickel, cobalt, or iron). We report on a class of platinum-lead/platinum (PtPb/Pt) core/shell nanoplate catalysts that exhibit large biaxial strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere (mA) per centimeter squared and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations reveal that the edge-Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-O bond strength. The intermetallic core and uniform four layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.
Through a facile one-step combustion method, partially reduced TiO(2) has been synthesized. Electron paramagnetic resonance (EPR) spectra confirm the presence of Ti(3+) in the bulk of an as-prepared sample. The UV-vis spectra show that the Ti(3+) here extends the photoresponse of TiO(2) from the UV to the visible light region, which leads to high visible-light photocatalytic activity for the generation of hydrogen gas from water. It is worth noting that the Ti(3+) sites in the sample are highly stable in air or water under irradiation and the photocatalyst can be repeatedly used without degradation in the activity.
Metastable structural polymorphs can have superior properties and applications to their thermodynamically stable phases, but the rational synthesis of metastable phases is a challenge. Here, a new strategy for stabilizing metastable phases using surface functionalization is demonstrated using the example of formamidinium lead iodide (FAPbI) perovskite, which is metastable at room temperature (RT) but holds great promises in solar and light-emitting applications. We show that, through surface ligand functionalization during direct solution growth at RT, pure FAPbI in the cubic perovskite phase can be stabilized in nanostructures and thin films at RT without cation or anion alloying. Surface characterizations reveal that long-chain alkyl or aromatic ammonium (LA) cations bind to the surface of perovskite structure. Calculations show that such functionalization reduces the surface energy and plays a dominant role in stabilizing the metastable perovskite phase. Excellent photophysics and optically pumped lasing from the stabilized single-crystal FAPbI nanoplates with low thresholds were demonstrated. High-performance solar cells can be fabricated with such directly synthesized stabilized phase-pure FAPbI with a lower bandgap. Our results offer new insights on the surface chemistry of perovskite materials and provide a new strategy for stabilizing metastable perovskites and metastable polymorphs of solid materials in general.
A new redox-responsive hybrid nanogated ensemble has been developed by introducing the disulfide-linked polymeric network at the outlet of mesoporous silica. The cross-linked polymer works as gatekeeper to control molecule release from mesoporous silica. The presence of disulfide reducing agent can effectively open the polymeric network and release the loading in a tunable manner.
Highly efficient earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are of great importance for renewable energy conversion systems. Herein, guided by theoretical calculations, we demonstrate highly efficient water splitting in alkaline solution using quarternary mixed nickel iron phosphosulfide (Ni1–x Fe x PS3) nanosheets (NSs), even though neither NiPS3 nor FePS3 is a good HER (or OER) electrocatalyst. With tuned electronic structure and improved electrical conductivity induced by mixing appropriate amount of Fe into NiPS3, Ni0.9Fe0.1PS3 NSs display excellent HER activity (an overpotential of 72 mV vs reversible hydrogen electrode (RHE) at a geometric catalytic current density of −10 mA cm–2 and a Tafel slope of 73 mV dec–1), which is among the best HER catalysts under alkaline conditions. Ni0.9Fe0.1PS3 NSs also show a good apparent OER activity (an overpotential of 329 mV vs RHE at a catalytic current density of 20 mA cm–2 and a Tafel slope of 69 mV dec–1), although structural investigation indicates the formation of Ni(Fe)OOH and Ni(Fe)(OH)2 layers on the catalyst surface after OER reactions as likely the real active species. These mixed nickel iron phosphosulfide non-precious-metal electrocatalysts with enhanced intrinsic activity and long-term stability and durability should have great potential in overall water-splitting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.