In this paper, we discuss the development of a control-oriented model for the power developed by a Variable Geometry Turbine (VGT). The turbine exit flow velocity, Cex, is obtained based on a polytropic process assumption for the full turbine stage. The rotor inlet velocity, Cin, is estimated, through an empirical relationship between Cex and Cin as a function of a dimensionless parameter ψ. The turbine power is developed based on Euler’s equations of Turbomachinery under the assumptions of zero exit swirl and alignment between the nozzle orientation and the Cin velocity vector. A power loss sub-model is also designed to account for the transmission loss associated with the power transfer between the turbine and compressor. The loss model is an empirical model and accounts for bearing friction and windage losses. Model validation results, for both steady state and transient operation, are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.