The study was employed to probe long non-coding RNA X-inactive specific transcript RNA (lncRNA XIST) expression profile and its influence on cell cycle, proliferation and apoptosis in myocardial cells. We also aimed to explore the possible meditating relationship between XIST, PDE4D and miR-130a-3p. Gene differential analysis was carried out using Human LncRNA Microarray V3.0. Quantitative real-time PCR (qRT-PCR) was used to test mRNA expressions of XIST, miR-130a-3p and PDE4D in normal cells and post-myocardial infarction (MI) cells. Western blot was applied to determine the protein expression profile of PED4D. Changes in viability and cell cycle/apoptosis of post-MI myocardial cells after silencing of XIST or PDE4D were investigated by MTT assay and flow cytometry, respectively. The targeting relationship between miR-130a-3p and XIST, PDE4D in myocardial cells were verified by dual luciferase reporter assay. Simulated MI environment was constructed by performing anoxic preconditioning in normal cells to probe the influence of XIST on myocardial cell apoptosis. XIST and PDE4D were overexpressed in post-MI myocardial cells, while miR-130a-3p was underexpressed in post-MI myocardial cells. High-expressed XIST and PDE4D both promoted myocardial cell apoptosis. High-expressed XIST also inhibited myocardial cell proliferation. XIST down-regulated miR-130a-3p and PDE4D was a direct target of miR-130a-3p. LncRNA XIST promotes MI by targeting miR-130a-3p. MI induced by PDE4D can be reversed by miR-130a-3p. This article is protected by copyright. All rights reserved.
The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation.
Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. This study aimed to investigate the mechanism by which microRNA-363-3p (miR-363-3p) regulates endothelial injury induced by inflammatory responses in CHD. The expression patterns of miR-363-3p, NADPH oxidase 4 (NOX4), and p38 MAPK/p-p38 MAPK were examined in an established atherosclerosis (AS) model in C57BL/6 mice and in isolated coronary arterial endothelial cells (CAECs) after gain- or loss-of-function experiments. We also measured the levels of inflammatory factors (IL-6, ICAM-1, IL-10 and IL-1β), hydrogen peroxide (H 2 O 2 ), and catalase (CAT) activity, followed by detection of cell viability and apoptosis. In AS, miR-363-3p was downregulated and NOX4 was upregulated, while miR-363-3p was identified as targeting NOX4 and negatively regulating its expression. The AS progression was reduced in NOX4 knockout mice. Furthermore, miR-363-3p resulted in a decreased inflammatory response, oxidative stress, and cell apoptosis in CAECs while augmenting their viability via blockade of the p38 MAPK signaling pathway. Overall, miR-363-3p hampers the NOX4-dependent p38 MAPK axis to attenuate apoptosis, oxidative stress injury, and the inflammatory reaction in CAECs, thus protecting CAECs against CHD. This finding suggests the miR-363-3p-dependent NOX4 p38 MAPK axis as a promising therapeutic target for CHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.