The static corner frequency and dynamic corner frequency in stochastic synthesis of ground motion from finite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower corner frequency, can be described by the source spectral model developed by the authors. A new dynamic corner frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.
Earthquake ground motions induced by a scenario event are spatially (partially) correlated and (partially) coherent. Simulated ground motion records can be used to carry out nonlinear inelastic time history analysis for a portfolio of buildings to estimate the seismic loss, which is advantageous as there is no need to develop and apply empirical ground motion prediction equations and the ductility demand rules, or to search the scenariocompatible recorded records at selected sites that may not exist. Further, if the structures being considered are sensitive to the orientation of the excitation, multiple-component ground motion records are needed. For the simulation of such ground motion records, previous studies have shown that correlation and coherency between any pair of ground motion components need to be incorporated. In this study, the seismic loss of a portfolio of hypothetical buildings in downtown Vancouver under bidirectional horizontal ground motions due to a scenario Cascadia event is estimated by using simulated bidirectional ground motion records that include realistic correlation and coherency characteristics. The hysteretic behaviors of the buildings are described by bidirectional Bouc-Wen model. The results show that the use of unidirectional ground motions and single-degreeof-freedom system structural model may underestimate the aggregated seismic loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.