BACKGROUND
The programmed death 1 (PD-1) receptor is a negative regulator of T-cell effector mechanisms that limits immune responses against cancer. We tested the anti–PD-1 antibody lambrolizumab (previously known as MK-3475) in patients with advanced melanoma.
METHODS
We administered lambrolizumab intravenously at a dose of 10 mg per kilogram of body weight every 2 or 3 weeks or 2 mg per kilogram every 3 weeks in patients with advanced melanoma, both those who had received prior treatment with the immune checkpoint inhibitor ipilimumab and those who had not. Tumor responses were assessed every 12 weeks.
RESULTS
A total of 135 patients with advanced melanoma were treated. Common adverse events attributed to treatment were fatigue, rash, pruritus, and diarrhea; most of the adverse events were low grade. The confirmed response rate across all dose cohorts, evaluated by central radiologic review according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, was 38% (95% confidence interval [CI], 25 to 44), with the highest confirmed response rate observed in the cohort that received 10 mg per kilogram every 2 weeks (52%; 95% CI, 38 to 66). The response rate did not differ significantly between patients who had received prior ipilimumab treatment and those who had not (confirmed response rate, 38% [95% CI, 23 to 55] and 37% [95% CI, 26 to 49], respectively). Responses were durable in the majority of patients (median follow-up, 11 months among patients who had a response); 81% of the patients who had a response (42 of 52) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was longer than 7 months.
CONCLUSIONS
In patients with advanced melanoma, including those who had had disease progression while they had been receiving ipilimumab, treatment with lambrolizumab resulted in a high rate of sustained tumor regression, with mainly grade 1 or 2 toxic effects. (Funded by Merck Sharp and Dohme; ClinicalTrials.gov number, NCT01295827.)
Immune checkpoint inhibitors1 result in impressive clinical responses2–5 but optimal results will require combination with each other6 and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here, we report major tumor regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation (RT) and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumors, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires RT, anti-CTLA4, and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T regulatory cells (Tregs) to increase the CD8 T cell to Treg (CD8/Treg) ratio. RT enhances the diversity of the T cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while RT shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligo-clonal T cell expansion. Similar to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to RT + anti-CTLA4, demonstrated persistent T cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumors to escape anti-CTLA4-based therapy, and the combination of RT, anti-CTLA4, and anti-PD-L1 promotes response and immunity through distinct mechanisms.
Despite the success of monotherapies based on blockade of programmed cell death 1 (PD-1) in human melanoma, most patients do not experience durable clinical benefit. Pre-existing T-cell infiltration and/or the presence of PD-L1 in tumours may be used as indicators of clinical response; however, blood-based profiling to understand the mechanisms of PD-1 blockade has not been widely explored. Here we use immune profiling of peripheral blood from patients with stage IV melanoma before and after treatment with the PD-1-targeting antibody pembrolizumab and identify pharmacodynamic changes in circulating exhausted-phenotype CD8 T cells (Tex cells). Most of the patients demonstrated an immunological response to pembrolizumab. Clinical failure in many patients was not solely due to an inability to induce immune reinvigoration, but rather resulted from an imbalance between T-cell reinvigoration and tumour burden. The magnitude of reinvigoration of circulating Tex cells determined in relation to pretreatment tumour burden correlated with clinical response. By focused profiling of a mechanistically relevant circulating T-cell subpopulation calibrated to pretreatment disease burden, we identify a clinically accessible potential on-treatment predictor of response to PD-1 blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.