By its nature, a traditional potentiometric cell composed of an Ag/AgCl-based reference electrode and a solid-contact indicating electrode is not symmetric. This results in undesirable potential drifts in response to a common perturbation such as a temperature change of the sample. We propose here an approach to restore symmetry by constructing a cell with two identical solid-contact ISEs used as reference and indicating electrodes. In this arrangement, the reference electrode is immersed in a compartment containing a constant background of an ion of interest, while the indicating electrode is directly immersed in the sample solution. This approach was successfully demonstrated for a cell composed of nitrate-selective electrodes with the hydrophobic derivative of poly(3,4-ethylenedioxythiophene) as a transducer layer. In particular, the symmetric setup is shown to lower by 4−5 times the observed potential drift resulting from temperature changes between +25 and +5 °C.
The use of thin membrane layer ion‐selective electrodes (of ∼200 nm thickness) as rapid diagnosis tool is proposed. While conventional solid contact systems (with a membrane of ∼250 μm thickness) may exhibit a satisfactory stability for regular laboratory use, a signal degradation can still be distinguished over a longer period of time but this requires tedious and time consuming tests. By diminishing the thickness of the membrane by a factor of 103 approximately, diffusion processes happen faster, and the lifetime is significantly reduced. This would ordinarily be a strong drawback but not if the aim is to detect a membrane deterioration in a shorter time frame. This characteristic makes thin membrane systems an ideal tool for rapid complications identification in the development process of conventional solid contact electrodes. The approach is demonstrated here in the development of an all new solid contact probe for anions. PEDOT−C14, a conducting polymer, was used for the first time in a solid contact electrode with an anion exchange membrane for the detection of nitrate. The thin layer configuration was used to optimise the polymerisation parameters as well as the membrane composition without having to run week‐long trials. A stable conventional solid contact electrode was in the end successfully developed and exhibited a lower detection limit of 10−5.5 M for nitrate with a stable Nernstian response for several days.
In potentiometric sensing, the preparation of the electrodes preceding a measurement is often the most time-consuming step. Eliminating the conditioning process can significantly speed up the preparation procedure, but it can also compromise the need for proper pre-equilibration of the membrane. We propose here a symmetric setup to address this challenge with an identical indicator and reference elements measured against each other, thereby compensating for potential drift. This strategy allows one to achieve potentiometric measurements using non-conditioned all-solid-state ion-selective electrodes for the detection of nitrate and potassium ions with Nernstian response slopes and detection ranges identical to those of conventional systems. To establish symmetry, a set of solid-contact ion-selective electrodes placed in a reference cell is measured against a set of identical electrodes in a sample cell. By subtracting the potentials between the two cells, potential instabilities not directly relevant to the measuring sample are eliminated, giving minimal potential drifts and stable 5-day potential responses. The E 0 value of the nitrate-selective electrodes in the symmetric setup had a standard deviation of just 3 mV for the 5-day period in contrast to 19 mV in the asymmetric system, clearly demonstrating the influence of the conditioning step which is almost eliminated in the former system. During the 20 h potential monitoring experiments, the drift dropped to below 0.3 mV/min in less than 6 min, as opposed to an average time of 35 min for the asymmetric system. The applicability of the proposed setup was successfully demonstrated with the measurement of nitrate in a river water sample, where a potential drift lower than 0.1 mV/min was reached in less than 5 min of first contact with solution.
Current methods to monitor nitrate levels in freshwater systems are outdated because they require expensive equipment and manpower. Punctual sampling on the field or at a fixed measuring station is...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.