A systematic study of 12 ferric and ferrous Kbeta X-ray emission spectra (XES) is presented. The factors contributing to the Kbeta main line and the valence to core region of the spectra are experimentally assessed and quantitatively evaluated. While the Kbeta main line spectra are dominated by spin state contributions, the valence to core region is shown to have greater sensitivity to changes in the chemical environment. A density functional theory (DFT) based approach is used to calculate the experimental valence spectra and to evaluate the contributions to experimental intensities and energies. The spectra are found to be dominated by iron np to 1s electric dipole allowed transitions, with pronounced sensitivity to spin state, ligand identity, ligand ionization state, hybridization state, and metal-ligand bond lengths. These findings serve as an important calibration for future applications to iron active sites in biological and chemical catalysis. Potential applications to Compound II heme derivatives are highlighted.
Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O(h) to T(d) geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.
A general method for the simulation of absorption (ABS) and fluorescence band shapes, resonance-Raman (rR) spectra, and excitation profiles based on the time-dependent theory of Heller is discussed. The following improvements to Heller's theory have been made: (a) derivation of new recurrence relations for the time-dependent wave packet overlap in the case of frequency changes between the ground and electronically excited states, (b) a new series expansion that gives insight into the nature of Savin's preresonance approximation, (c) incorporation of inhomogeneous broadening effects into the formalism at no additional computational cost, and (d) derivation of a new and simple short-time dynamics based equation for the Stokes shift that remains valid in the case of partially resolved vibrational structure. Our implementation of the time-dependent theory for the fitting of experimental spectra and the simulation of model spectra as well as the quantum mechanical calculation of the model parameters is discussed. The implementation covers all electronic structure approaches which are able to deliver ground- and excited-state energies and transition dipole moments. The technique becomes highly efficient if analytic gradients for the excited-state surface are available. In this case, the computational cost for the simultaneous prediction of ABS, fluorescence, and rR spectra is equal to that of a single excited-state geometry optimization step while the limitations of the short-time dynamics approximation are completely avoided. As a test case we discuss the well-known case of the strongly allowed 1 (1)A(g) --> 1 (1)B(u) transition in 1,3,5 trans-hexatriene in detail using method ranging from simple single-reference treatments to elaborate multireference electronic structure approaches. At the highest computational level, the computed spectra show the best agreement that has so far been obtained with quantum chemical methods for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.