This work was supported by the European Commission through the Cooperation Programme under EUBra-BIGSEA Horizon 2020 Grant [Este projeto é resultante da 3a Chamada Coordenada BR-UE em Tecnologias da Informação e Comunicação (TIC), anunciada pelo Ministério de Ciência, Tecnologia e Inovação (MCTI)] under Grant 690116.
Data analysis of public transportation data in large cities is a challenging problem. Managing data ingestion, data storage, data quality enhancement, modelling and analysis requires intensive computing and a non-trivial amount of resources. In EUBra-BIGSEA (Europe-Brazil Collaboration of Big Data Scientic Research Through Cloud-Centric Applications), we address such problems in a comprehensive and integrated way. EUBra-BIGSEA provides a platform for building up data analytic workows on top of elastic cloud services without requiring skills related to either programming or cloud services. The approach combines cloud orchestration, Quality of Service and automatic parallelisation on a platform that includes a toolbox for implementing privacy guarantees and data quality enhancement as well as advanced services for sentiment analysis, trac jam estimation and trip recommendation based on estimated crowdedness. All developments are available under Open Source licenses (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.