2018
DOI: 10.1109/tits.2018.2846036
|View full text |Cite
|
Sign up to set email alerts
|

Estimating Inefficiency in Bus Trip Choices From a User Perspective With Schedule, Positioning, and Ticketing Data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 14 publications
(4 citation statements)
references
References 17 publications
0
2
0
1
Order By: Relevance
“…Os autores caracterizaram vários padrões do sistema como um todo, como a reutilização dê onibus em diferentes linhas, capacidade dosônibus e número de viagens diárias. Já Braz et al [Braz et al 2018] utilizam as informações das bases do transporte público da cidade de Curitiba para estimar a ineficiência nos tempos de viagem realizadas pelo sistema.…”
Section: Trabalhos Relacionadosunclassified
“…Os autores caracterizaram vários padrões do sistema como um todo, como a reutilização dê onibus em diferentes linhas, capacidade dosônibus e número de viagens diárias. Já Braz et al [Braz et al 2018] utilizam as informações das bases do transporte público da cidade de Curitiba para estimar a ineficiência nos tempos de viagem realizadas pelo sistema.…”
Section: Trabalhos Relacionadosunclassified
“…Nowadays GTFS has been used as an industry standard for a majority of transit agencies to publish their transit data around the world [ 6 ]. As GTFS data contains both scheduled and real-time information about transit operations, it has been actively used for many research problems such as transit accessibility [ [7] , [8] , [9] , [10] , [11] ], transit network analysis [ 12 , 13 ], performance evaluation [ 14 , 15 ], delay prediction [ [16] , [17] , [18] ], and transit trip inference [ 19 , 20 ].…”
Section: Data Preparationmentioning
confidence: 99%
“…First of all, the different data sources to combine in order to perform the analysis were designed and currently operate with diverse purposes, and they usually have no explicit reference to each other [11]. In addition, there are numerous devices asynchronously generating data for the system, which increases the likelihood of measurement errors [43]. Such challenges are tougher when a city-wide analysis is performed, as opposed to a limited (single/few-route) analysis, as in some cases [46].…”
Section: B Public Transit Analyticsmentioning
confidence: 99%