The goal of this paper is to introduce an adaptive load frequency control (LFC) technique for power systems. The concept of the proposed adaptive technique is built on the on-line tuning of the gain of an integral controller using Electro-Search optimization (ESO) supported by a modification called the 'balloon effect'. The main target is to regulate the frequency of isolated and interconnected power systems. The balloon effect is designed to obtain the input/output signals of the power system plant at any moment; then, these signals are utilized to calculate the value of the open loop transfer function of the plant at the same time. This will emphatically affect the specified objective function of the ESO approach and increase its sensitivity to and effect on system difficulties such as system step load changes, parameter uncertainties and the effect of the penetrations resulting from renewable sources. Delayed time resulting from the communication process between the area and control center is considered in the dynamic model of interconnected MGs, and nonlinearities, such as governor dead bands (GDBs) and generation rate constraints (GRCs), are included in the simulation model. The simulation results demonstrate the effectiveness and success of the proposed controller tuned by the ESO approach with a balloon effect and provide better performance of frequency regulation than a fixed controller, as well as other methods such as standard Jaya and ESO methods. INDEX TERMS Load frequency control, microgrid, electro-search technique, balloon effect, adaptive control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.