The regulation of N-cadherin-mediated intercellular adhesion strength in fibroblasts is poorly characterized; this is due, in part, to a lack of available quantitative models. We used a recombinant N-cadherin chimeric protein and a Rat 2 fibroblast, donor-acceptor cell model, to study the importance of cortical actin filaments and cortactin in the strengthening of N-cadherin adhesions. In wash-off assays, cytochalasin D (1 μM) reduced intercellular adhesion by threefold, confirming the importance of cortical actin filaments in strengthening of N-cadherin-mediated adhesions. Cortactin, an actin filament binding protein, spatially colocalized to, and directly associated with, nascent N-cadherin adhesion complexes. Transfection of Rat-2 cells with cortactin-specific, RNAi oligonucleotides reduced cortactin protein by 85% and intercellular adhesion by twofold compared with controls (P<0.005) using the donor-acceptor model. Cells with reduced cortactin exhibited threefold less N-cadherin-mediated intercellular adhesion strength compared with controls in wash-off assays using N-cadherin-coated beads. Immunoprecipitation and immunoblotting showed that N-cadherin-associated cortactin was phosphorylated on tyrosine residue 421 after intercellular adhesion. While tyrosine phosphorylation of cortactin was not required for recruitment to N-cadherin adhesions it was necessary for cadherin-mediated intercellular adhesion strength. Thus cortactin, and phosphorylation of its tyrosine residues, are important for N-cadherin-mediated intercellular adhesion strength.
Cortactin regulates the strength of nascent N-cadherin-mediated intercellular adhesions through a tyrosine phosphorylation-dependent mechanism. Currently, the functional significance of cortactin phosphorylation and the kinases responsible for the regulation of adhesion strength are not defined. We show that the nonreceptor tyrosine kinase Fer phosphorylates cadherin-associated cortactin and that this process is involved in mediating intercellular adhesion strength. In wild-type fibroblasts N-cadherin ligation-induced transient phosphorylation of Fer, indicating that junction formation activates Fer kinase. Tyrosine phosphorylation of cortactin after N-cadherin ligation was strongly reduced in fibroblasts expressing only catalytically inactive Fer (D743R), compared with wild-type cells. In wild-type cells, Ncadherin-coated bead pull-off assays induced fourfold greater endogenous N-cadherin association than in D743R cells. Fluorescence recovery after photobleaching showed that GFP-N-cadherin mobility at nascent contacts was 50% faster in wild-type than D743R cells. In shear wash-off assays, nascent intercellular adhesion strength was twofold higher in wild-type than D743R cells. Cortactin recruitment to adhesions was independent of Fer kinase activity, but was impacted by N-cadherin ligation-provoked Rac activation. We conclude that N-cadherin ligation induces Rac-dependent cortactin recruitment and Fer-dependent cortactin phosphorylation, which in turn promotes enhanced mobilization and interaction of surface expressed N-cadherin in contacting cells.
Phosphoinositides regulate several actin-binding proteins but their role at intercellular adhesions has not been defined. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) was generated at sites of N-cadherin-mediated intercellular adhesion and was a critical regulator of intercellular adhesion strength. Immunostaining for PI(4,5)P2 or transfection with GFP-PH-PLCdelta showed that PI(4,5)P2 was enriched at sites of N-cadherin adhesions and this enrichment required activated Rac1. Isoform-specific immunostaining for type I phosphatidylinositol 4-phosphate 5 kinase (PIP5KI) showed that PIP5KIgamma was spatially associated with N-cadherin-Fc beads. Association of PIP5KIgamma with N-cadherin adhesions was in part dependent on the activation of RhoA. Transfection with catalytically inactive PIP5KIgamma blocked the enrichment of PI(4,5)P2 around beads. Catalytically inactive PIP5KIgamma or a cell-permeant peptide that mimics and competes for the PI(4,5)P2-binding region of the actin-binding protein gelsolin inhibited incorporation of actin monomers in response to N-cadherin ligation and reduced intercellular adhesion strength by more than twofold. Gelsolin null fibroblasts transfected with a gelsolin severing mutant containing an intact PI(4,5)P2 binding region, demonstrated intercellular adhesion strength similar to wild-type transfected controls. We conclude that PIP5KIgamma-mediated generation of PI(4,5)P2 at sites of N-cadherin contacts regulates intercellular adhesion strength, an effect due in part to PI(4,5)P2-mediated regulation of gelsolin.
The regulation of adherens junction formation in cells of mesenchymal lineage is of critical importance in tumorigenesis but is poorly characterized. As actin filaments are crucial components of adherens junction assembly, we studied the role of gelsolin, a calciumdependent, actin severing protein, in the formation of N-cadherin-mediated intercellular adhesions. With a homotypic, donor-acceptor cell model and plates or beads coated with recombinant N-cadherin-Fc chimeric protein, we found that gelsolin spatially co-localizes to, and is transiently associated with, cadherin adhesion complexes. Fibroblasts from gelsolin-null mice exhibited marked reductions in kinetics and strengthening of Ncadherin-dependent junctions when compared with wild-type cells. Experiments with lanthanum chloride (250 M) showed that adhesion strength was dependent on entry of calcium ions subsequent to N-cadherin ligation. Cadherin-associated gelsolin severing activity was required for localized actin assembly as determined by rhodamine actin monomer incorporation onto actin barbed ends at intercellular adhesion sites. Scanning electron microscopy showed that gelsolin was an important determinant of actin filament architecture of adherens junctions at nascent N-cadherin-mediated contacts. These data indicate that increased actin barbed end generation by the severing activity of gelsolin associated with N-cadherin regulates intercellular adhesion strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.