The performance of text classification methods has improved greatly over the last decade for text instances of less than 512 tokens. This limit has been adopted by most state-of-the-research transformer models due to the high computational cost of analyzing longer text instances. To mitigate this problem and to improve classification for longer texts, researchers have sought to resolve the underlying causes of the computational cost and have proposed optimizations for the attention mechanism, which is the key element of every transformer model. In our study, we are not pursuing the ultimate goal of long text classification, i.e., the ability to analyze entire text instances at one time while preserving high performance at a reasonable computational cost. Instead, we propose a text truncation method called Text Guide, in which the original text length is reduced to a predefined limit in a manner that improves performance over naive and semi-naive approaches while preserving low computational costs. Text Guide benefits from the concept of feature importance, a notion from the explainable artificial intelligence domain. We demonstrate that Text Guide can be used to improve the performance of recent language models specifically designed for long text classification, such as Longformer. Moreover, we discovered that parameter optimization is the key to Text Guide performance and must be conducted before the method is deployed. Future experiments may reveal additional benefits provided by this new method.
Employing systems engineering (SE) methodology and principles to the development of smart products has the potential of establishing a novel field of research. This paper summarises previous work in this area in order to define and characterise a revolutionary SE and social-networking framework for collaborative education, design and modelling of the next generation of smarter products. A conceptual framework and practical applications of SE approaches and social networking to support smarter product development is proposed. Future challenges that collaborative SE and interactive social networking techniques are likely to face in this domain are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.