Handling rapidly evolving technology and almost daily changes in demand and customer satisfaction, while maintaining competitiveness in a highly competitive environment, requires good coordination and planning of both production and logistics activities on the shop floor, namely: machines and tools. The goal is to optimize costs and reduce delivery lead times in order to provide the customer just in time; we focus on the job shop scheduling problem (JSSP), which is one of the most complex problems encountered in real shop floor. In this paper, we study a generalized (JSSP) including transportation times and a set of additional constraints on the number of transporter vehicles and their multiple transfer capabilities and also on the limited capacity of input/output of machines. The objective is to minimize in one hand tardiness and earliness penalties on delays and advances compared to the lead-time delivery of finished jobs and on the other hand the number of empty moves of transporter vehicles.
<abstract><p>We introduce a topology on the set of vertices of a directed graph and we call the topological space as pathless directed topological space. We study relation between the relative topologies and pathless directed topological spaces of E-generated subdirected graphs. Then, we study connectedness, isomorphic and homeomorphic properties in digraphs and pathless directed topological spaces. Moreover, we apply our results to blood circulation process in human heart and disprove Shokry and Aly [M. Shokry and R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103-1109], Nada et al. [S. Nada, A. E. F. El Atik and M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801-5810] and Nawar et al. [A. S. Nawar and A. E. F. A. El-Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), p.1950006]. We show that pathless directed topology is accurately describing the circulation of blood in the heart of human body.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.