Elle Øtait plusieurs fois plus faible dans le groupe sans BMP que dans les groupes susmentionnØs (p=0,001). Nous concluons que la stØrilisation à l'oxyde d'Øthylne rØduit d'un tiers l'activitØ ostØoformatrice de la BMP de renne.
Background Native BMP extracts from reindeer effectively induce ectopic new bone formation in vivo, but their bone healing properties have not yet been evaluated. We investigated the effect of reindeer BMP extracts on the healing of long bone defects.Methods The implants tested contained 5 mg or 10 mg of unsterilized BMP extract from reindeer and 10 mg of gamma-sterilized BMP extract administered with collagen carrier (Lyostypt, B. Braun, Germany). 70 µg of rhBMP-2 with collagen carrier (InductOs; Wyeth Europa) served as positive control, and collagen implants (Lyostypt) and untreated defects served as negative controls. New Zealand White rabbits with 1.5 cm of critical-size radius bone defects were used, with 8 weeks of follow-up.Results Radiographic analysis showed bone formation (BF) to be higher in all groups containing BMPs than in the untreated controls. BF was also higher in the rhBMP-2 group, and marginally higher in the group treated with 10 mg of unsterilized reindeer BMP extract (p = 0.06) as compared to the collagen controls. Bone union (BU) was better in the unsterilized BMP extract groups and rhBMP-2 group than in the untreated controls. BU was also better in the implants with 10 mg of unsterilized reindeer BMP extract and rhBMP-2 than in the collagen-treated implants. The mean area of new bone at the site of the defect proved to be higher in all implants containing BMP than in the untreated defects. It was also higher in the groups with 10 mg of unsterilized reindeer BMP extract and rhBMP-2 than in the collagen-treated controls. Mechanical tests showed torsional stiffness of the bones to be higher in the group with 10 mg of unsterilized BMP extract than in the collagen
Background Bone morphogenetic proteins (BMPs), which are capable of stimulating the production of new bone, must be sterilized before preclinical and clinical use to reduce the risk of infections and associated complications. In this study, we investigated the effects of gamma sterilization on the osteoinductivity of native reindeer BMP extract in the Balb/C mouse thigh muscle pouch model.Methods 5 mg of native reindeer BMP extract and 5 mg of bovine serum albumin were administered separately either in gelatine capsules or mixed with gelatine as injections. The dose of gamma irradiation was 4.1 Mrad. Unsterile capsules and injections served as controls. New bone formation was evaluated based on the incorporation of Ca 45 and also radiographically 3 weeks after implantation.Results Albumin-containing implants and injections did not induce new bone formation, as monitored in radiographs. Gamma sterilization did not reduce the osteoinductivity of native BMP extract in capsules, but a significant decrease in osteoinductivity-measured as area (50%) and Ca 45 incorporation of new bone (27%)-was seen after injection. Gamma sterilization had no effect on the optical density of new bone induced by native BMP extract administered in capsules or by injection.Interpretation We conclude that, as gamma irradiation did not reduce the osteoinductivity of reindeer BMP extract in gelatine capsules, this method appears to be suitable for sterilization of BMPs to be given in capsule form. Native reindeer BMP extract was more sensitive to irradiation in soluble collagen (gelatine) than BMP in gelatine capsules. This finding must be given serious
Background and Aims: For human use, it is necessary to sterilize bone morphogenetic proteins (BMPs), in order to reduce the risk of infections and associated complications. We compared the effects of ethylene oxide and gamma irradiation in the sterilization of native reindeer BMP extract with regard to bone induction in the Balb/C mouse thigh muscle pouch model. Materials and Methods: BMP extract, sterilized with ethylene oxide gas (Steri-Vac 4XL, temperature 29°C, exposure time 4 h, ethylene oxide concentration 860 mg/l), or gamma irradiation at doses of 3.15 MRad was administered in implants containing 5 or 10 mg of BMP extract with collagen carrier. Non-sterilized collagen implants served as controls. New bone formation was evaluated based on the incorporation of Ca 45 and radiographically three weeks after implantation.Results: The collagen was not able to induce new bone visible in radiographs. The mean Ca 45 incorporation in the gamma sterilized group containing 5 mg of BMP extract was 30 % (p =0.04) and that containing 10 mg of BMP extract was 60 % (p =0.02) higher than seen in the corresponding ethylene oxide sterilized groups. The mean new bone areas were 45 % higher in the gamma sterilized groups than in the corresponding ethylene oxide sterilized groups, but the differences were not significant. The mean optical density of new bone in the gamma sterilized group containing 5 mg of BMP extract was 75 % (p =0.00) and in that containing 10 mg of BMP extract was 70 % (p =0.00) higher than seen in the corresponding ethylene oxide sterilized groups.Conclusion: Native reindeer BMP extract is more sensitive to the effects of ethylene oxide gas sterilization than gamma irradiation. These results suggest that gamma irradiation is recommendable for the sterilization of BMP extracts.
Our results suggest that BMP can be administered percutaneously, and that collagen and physiological saline are equally good carriers of injectable implants of native reindeer BMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.