Plastic waste is currently generated at a rate approaching 400 Mt year–1. The amount of plastics accumulating in the environment is growing rapidly, yet our understanding of its persistence is very limited. This Perspective summarizes the existing literature on environmental degradation rates and pathways for the major types of thermoplastic polymers. A metric to harmonize disparate types of measurements, the specific surface degradation rate (SSDR), is implemented and used to extrapolate half-lives. SSDR values cover a very wide range, with some of the variability arising due to degradation studies conducted in different natural environments. SSDRs for high density polyethylene (HDPE) in the marine environment range from practically 0 to approximately 11 μm year–1. This approach yields a number of interesting insights. Using a mean SSDR for HDPE in the marine environment, linear extrapolation leads to estimated half-lives ranging from 58 years (bottles) to 1200 years (pipes). For example, SSDRs for HDPE and polylactic acid (PLA) are surprisingly similar in the marine environment, although PLA degrades approximately 20 times faster than HDPE on land. Our study highlights the need for better experimental studies under well-defined reaction conditions, standardized reporting of rates, and methods to simulate polymer degradation using.
The usual understanding in polymer electrolyte design is that increasing the polymer dielectric constant results in reduced ion aggregation and therefore increased ionic conductivity. We demonstrate here that in a class of polymers with extensive metal-ligand coordination and tunable dielectric properties, the extent of ionic aggregation is delinked from the ionic conductivity. The polymer systems considered here comprise ether, butadiene, and siloxane backbones with grafted imidazole side-chains, with dissolved Li + , Cu 2+ , or Zn 2+ salts. The nature of ion aggregation is probed using a combination of X-ray scattering, electron paramagnetic resonance (in the case where the metal cation is Cu 2+ ), and polymer field theorybased simulations. Polymers with less polar backbones (butadiene, and siloxane) show stronger ion aggregation in X-ray scattering compared to those with the more polar ether backbone. The Tg-normalized ionic conductivities were however unaffected by extent of aggregation. The results are explained on the basis of simulations which indicate that polymer backbone polarizability does impact the microstructure and the extent of ion aggregation, but does not impact percolation, leading to similar ionic conductivity regardless of the extent of ion aggregation. The results emphasize the ability to design for low polymer Tg through backbone modulation, separately from controlling ion-polymer interaction dynamics through ligand choice.
Trityl-OX063 is a narrow-line, water-soluble, and biocompatible polarizing agent, widely used for dynamic nuclear polarization (DNP) amplified NMR of 13C, but not of the abundant 1H nuclear spin, for which the ineffective solid effect (SE) is expected to be operational. Surprisingly, we observed a crossover from SE to thermal mixing (TM) DNP of 1H with increasing Trityl-OX063 concentration at 7 T. We experimentally ascertained diagnostic signatures of TM-DNP that have only been theoretically predicted: (i) an electron paramagnetic resonance (EPR) spectrum that maintains an asymmetrically broadened EPR line from strong e–e couplings and (ii) hyperpolarization, i.e., cooling of select electron-spin populations, manifested in a characteristic pump–probe electron double-resonance spectrum under DNP conditions. Low microwave power requirements, high polarization transfer rates, and efficient DNP at high magnetic fields are the key benefits of TM-DNP.
Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE–Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H–15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.
Phosphorus-modified siliceous zeolites, or P-zeosils, catalyze the selective dehydration of biomass derivatives to platform chemicals such as p-xylene and 1,3-butadiene. Water generated during these reactions is a critical factor in catalytic activity, but the effects of hydrolysis on the structure, acidity, and distribution of the active sites are largely unknown. In this study, the Psites in an all-silica self-pillared pentasil (P-SPP) with a low P-loading (Si/P = 27) were identified by solid-state 31 P NMR using frequency-selective detection. This technique resolves overlapping signals for P-sites that are covalently bound to the solid phase, as well as oligomers confined in the zeolite but not attached to the zeolite. Dynamic Nuclear Polarization provides the sensitivity necessary to conduct 29 Si-filtered 31 P detection and 31 P− 31 P correlation experiments. The aforementioned techniques allow us to distinguish sites with P−O−Si linkages from those with P−O− P linkages. The spectra reveal a previously unappreciated diversity of P-sites, including evidence for surface-bound oligomers. In the dry P-zeosil, essentially all P-sites are anchored to the solid phase, including mononuclear sites and dinuclear sites containing the [Si−O−P−O−P−O−Si] motif. The fully-condensed sites evolve rapidly when exposed to humidity, even at room temperature. Partially hydrolyzed species have a wide range of acidities, inferred from their calculated LUMO energies. Initial cleavage of some P− O−Si linkages results in an evolving mixture of surface-bound mono-and oligonuclear P-sites with increased acidity. Subsequent P− O−P cleavage leads to a decrease in acidity as the P-sites are eventually converted to H 3 PO 4 . The ability to identify acidic sites in Pzeosils and to describe their structure and stability will play an important role in controlling the activity of microporous catalysts by regulating their water content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.