GaN layers are grown on 2-inch ScAlMgO4 (0001) nominally on-axis substrates by metalorganic vapor phase epitaxy. The epilayer structural qualities are comparable to those of conventional GaN on sapphire (0001) substrates. The wafer curvature is investigated using X-ray diffraction, and the results suggest suppressed bowing in the GaN/ScAlMgO4 heterostructures compared with the GaN/sapphire heterostructures. This result is attributed to a smaller mismatch of the thermal expansion coefficients in GaN/ScAlMgO4. The suppressed bowing can be beneficial for device processes.
The purposes of this study were to evaluate the image quality of five types of liquid-crystal display (LCD) monitors by utilizing the normalized-rank approach and to investigate the effect of LCD monitor specifications, such as display colors, luminance, and resolution, on the evaluators' ranking. The LCD monitors used in this study were 2, 3 and 5 mega-pixel monochrome LCD monitors, and 2 and 3 mega-pixel color LCD monitors (Eizo Nanao Corporation). All LCD monitors were calibrated to the grayscale standard display function (GSDF) with different maximum luminance (recommended luminance) settings. Also, four kinds of radiographs were used for observer study based on the normalized-rank approach: three adult chest radiographs, three pediatric chest radiographs, three ankle joint radiographs, and four double-contrasted upper gastrointestinal radiographs. Ten radiological technologists participated in the observer study. Monochrome LCD monitors exhibited superior ranking with statistically significant differences (p<0.05) compared to color LCD monitors in all kinds of radiographs. The major difference between monochrome and color monitors was luminance. Therefore, it is considered that the luminance of LCD monitors affects observers' evaluations based on image quality. Moreover, in the case of radiographs that include high frequency image components, the monitor resolution also affects the evaluation. In clinical practice, it is necessary to optimize the luminance and choose appropriate LCD monitors for diagnostic images.
The purpose of this study was to evaluate the basic imaging properties of the two latest digital radiographic X-ray systems, namely, the DynaDirect Winscope 6000 (abbr. as System A, Toshiba Medical Systems) and the Sonialvision Safire Multi (abbr. as System B, Shimadzu Corp.). These systems were based on a direct-conversion flat panel detector (FPD) of amorphous selenium. The basic imaging properties of the two systems were evaluated by measuring characteristic curves, presampled modulation transfer functions (MTFs), and noise power spectra (NPS) using DICOM images to which no resampling was performed with a matrix size of 2048x2048. In addition, noise equivalent quanta (NEQ) and detective quantum efficiency (DQE) calculated from the result of the basic imaging properties were evaluated. The characteristic curves of the two systems showed quite high linearity. The MTFs of the two systems indicated high-resolution properties, as is well known to be an advantage of the direct conversion FPD system. However, the NPS of System A showed better performance than System B under the same exposures. Therefore, the DQE of System A was higher than that of System B at all spatial frequencies.
We investigated the effect on image data resampling in an evaluation of the basic imaging properties for a digital radiographic system based on a flat panel detector (FPD). One of the latest digital radiographic systems was used in this study. This system was based on a direct-conversion FPD of amorphous selenium. The basic imaging properties of the system were evaluated by measuring characteristic curve, presampled modulation transfer function (MTF), and Wiener spectrum (WS) using DICOM image with a matrix size of 2048 x 2048. The evaluations were performed under two conditions because matrix size automatically changes according to the selection of imaging size. One of the conditions was a different matrix size between image data acquired on the FPD and the output image (DICOM image for which resampling was performed). The other condition was that these matrices be the same size (DICOM image with no resampling performed). Resampling did not affect the characteristic curves. However, MTF and the WS obtained from the resampled data were different from those of the one not resampled, which is considered to be the "inherent" basic imaging properties, and this phenomenon was remarkable, especially in terms of the MTFs. Our study indicates that the effect on resampling should not be disregarded in evaluating the basic imaging properties of digital radiographic systems. Therefore, it is mandatory to use DICOM images for which no resampling was performed in order to evaluate the inherent basic imaging properties for digital radiographic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.