An enzyme, horseradish peroxidase (HRP), was adsorbed in the manner of the single immersion method on the silica mesoporous materials FSM-16, MCM-41, and SBA-15 with various pore diameters from 27 to 92 Å, and their enzymatic activities in an organic solvent and the thermal stabilities were studied. FSM-16 and MCM-41 showed a larger amount of adsorption of HRP than SBA-15 or silica gel when the pore sizes were larger than the 50 Å. The increased enzyme adsorption capacity may be due to the surface characteristics of FSM-16 and MCM-41, which would be consistent with the observed larger adsorption capacity of cationic pigment compared with anionic pigment for these materials. The immobilized HRP on FSM-16 and MCM-41 with pore diameter 50 Å showed the highest enzymatic activity in an organic toluene and thermal stability in aqueous solution at the temperature of 70 °C. The immobilized enzymes on the other mesoporous materials including large or small pore sized FSM-16 showed lower enzymatic activity in an organic solvent and thermal stability. Both surface character and size matching between pore sizes and the molecular diameters of HRP were important in achieving high enzymatic activity in organic solvent and high thermal stability.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2(fl/fl);Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-beta signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-beta signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-beta-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2(fl/fl);Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-beta signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2(fl/fl);Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-beta to control chondrogenesis and osteogenesis during mandibular development.
Previous studies have demonstrated that TGFbeta induces a smooth muscle fate in primary neural crest cells in culture. By crossing a conditional allele of the type II TGFbeta receptor with the neural crest-specific Wnt1cre transgene, we have addressed the in vivo requirement for TGFbeta signaling in smooth muscle specification and differentiation. We find that elimination of the TGFbeta receptor does not alter neural crest cell specification to a smooth muscle fate in the cranial or cardiac domains, and that a smooth muscle fate is not realized by trunk neural crest cells in either control or mutant embryos. Instead, mutant embryos exhibit with complete penetrance two very specific and mechanistically distinct cardiovascular malformations--persistent truncus arteriosus (PTA) and interrupted aortic arch (IAA-B). Pharyngeal organ defects such as those seen in models of DiGeorge syndrome were not observed, arguing against an early perturbation of the cardiac neural crest cell lineage. We infer that TGFbeta is an essential morphogenic signal for the neural crest cell lineage in specific aspects of cardiovascular development, although one that is not required for smooth muscle differentiation.
LEF1 is a cell-type-specific transcription factor and mediates Wnt signaling pathway by association with its co-activator beta-catenin. Wnt signaling is known to be critical for the specification of cranial neural crest (CNC) cells and may regulate the fate diversity of the CNC during craniofacial morphogenesis. Loss of Lef1 results in arrested tooth development at the late bud stage and LEF1 is required for a relay of a Wnt signaling to a cascade of FGF signaling activities to mediate the epithelial-mesenchymal interaction during tooth morphogenesis. It remains unclear, however, what is the cellular mechanism of LEF1 signaling in regulating tooth morphogenesis. To test the hypothesis that LEF1 signaling regulates the fate of the dental epithelial and the CNC-derived mesenchymal cells during tooth morphogenesis, we investigated and compared the cellular migration, proliferation, and apoptotic activity within the tooth germ between the wild-type and Lef1 null mutant mice. Using the Wnt1-Cre/R26R transgenic system for indelibly marking the progenies of CNC cells, we show that there is no CNC migration defect in the Lef1 null mutant mice, indicating that the arrest in tooth development is not the result of shortage of the CNC contribution into the first branchial arch in the Lef1 mutant. Furthermore, there is no alteration in cell proliferation or condensation of the CNC-derived dental mesenchyme in the Lef1 null mutant, suggesting that LEF1 may not affect the cell cycle progression of the multipotential CNC cells during tooth morphogenesis. Importantly, apoptotic activity is significantly increased within the dental epithelium in the Lef1 null mutant mice. As the result of this increased cell death, the bud stage tooth germ fails to advance to the cap stage in the absence of Lef1. Inhibition of apoptotic activity by FGF4 rescues the tooth development in the Lef1 null mutant. Our studies suggest that LEF1 is a critical survival factor for the dental epithelial cells during tooth morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.