Left ventricular hypertrophy is associated with an increased risk of ventricular arrhythmias. However, the underlying molecular basis is poorly understood. It has been reported that small-conductance Ca(2+)-activated K(+) (SK) channels are involved in the pathogenesis of ventricular arrhythmias in heart failure. The present study aimed to test the hypothesis that SK channel activity is increased via the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent pathway in hypertensive cardiac hypertrophy. Normotensive Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) were used. Whole cell membrane currents were recorded in isolated ventricular myocytes by the patch-clamp method, and apamin-sensitive K(+) current (IKAS), which is inhibited by apamin (100 nM), an SK channel blocker, was evaluated. IKAS at 40 mV was present in SHRs, whereas it was hardly detectable in WKY rats (0.579 ± 0.046 vs. 0.022 ± 0.062 pA/pF, both n = 6, P < 0.05). IKAS was almost completely abolished by 1 μM KN-93, a CaMKII inhibitor, in SHRs. Optical recordings of left ventricular anterior wall action potentials revealed that apamin prolonged the late phase of repolarization only in SHRs. Western blot analysis of SK channel protein isoforms demonstrated that SK2 was significantly increased in SHRs compared with WKY rats (SK2/GAPDH: 0.66 ± 0.07 vs. 0.40 ± 0.02, both n = 6, P < 0.05), whereas SK1 and SK3 did not differ between groups. In addition, autophosphorylated CaMKII was significantly increased in SHRs (phosphorylated CaMKII/GAPDH: 0.80 ± 0.06 vs. 0.58 ± 0.06, both n = 6, P < 0.05) despite a comparable total amount of CaMKII between groups. In conclusion, SK channels are upregulated via the enhanced activation of CaMKII in cardiac hypertrophy in SHRs.
The molecular and electrophysiological mechanisms of acute ischemic ventricular arrhythmias in hypertrophied hearts are not well known. We hypothesized that small-conductance Ca-activated K (SK) channels are activated during hypoxia via the Ca/calmodulin-dependent protein kinase II (CaMKII)-dependent pathway. We used normotensive Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) as a model of cardiac hypertrophy. The inhibitory effects of SK channels and ATP-sensitive K channels on electrophysiological changes and genesis of arrhythmias during simulated global hypoxia (GH) were evaluated. Hypoxia-induced abbreviation of action potential duration (APD) occurred earlier in ventricles from SHRs versus. WKY rats. Apamin, a SK channel blocker, prevented this abbreviation in SHRs in both the early and delayed phase of GH, whereas in WKY rats only the delayed phase was prevented. In contrast, SHRs were less sensitive to glibenclamide, a ATP-sensitive K channel blocker, which inhibited the APD abbreviation in both phases of GH in WKY rats. SK channel blockers (apamin and UCL-1684) reduced the incidence of hypoxia-induced sustained ventricular arrhythmias in SHRs but not in WKY rats. Among three SK channel isoforms, SK2 channels were directly coimmunoprecipitated with CaMKII phosphorylated at Thr (p-CaMKII). We conclude that activation of SK channels leads to the APD abbreviation and sustained ventricular arrhythmias during simulated hypoxia, especially in hypertrophied hearts. This mechanism may result from p-CaMKII-bound SK2 channels and reveal new molecular targets to prevent lethal ventricular arrhythmias during acute hypoxia in cardiac hypertrophy. NEW & NOTEWORTHY We now show a new pathophysiological role of small-conductance Ca-activated K channels, which shorten the action potential duration and induce ventricular arrhythmias during hypoxia. We also demonstrate that small-conductance Ca-activated K channels interact with phosphorylated Ca/calmodulin-dependent protein kinase II at Thr in hypertrophied hearts.
Sustained ventricular arrhythmias (SVAs) lead to sudden cardiac death, for which βadrenoreceptor blockers are effective. We hypothesized that electrophysiological changes and arrhythmias by β-adrenoreceptor stimulation are crucially related to activation of small-conductance calcium-activated potassium (SK) channels via the increase in Ca 2+ / calmodulin-dependent protein kinase II (CaMKII) activity. We used normotensive Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs). The latter served as a model of left ventricular hypertrophy. We performed dual optical mapping of action potentials and Ca 2+ transients, and the effects of isoproterenol and apamin, an SK channel blocker, were evaluated in the Langendorff-perfused hearts. Action potential duration was abbreviated by isoproterenol (100 nM) in both WKY rats and SHRs. In contrast, the CaMKII activity was increased by isoproterenol only in SHRs. In the presence of isoproterenol, apamin prolonged the action potential duration only in SHRs (n = 10, from 116.6 ± 5.05 ms to 125.4 ± 3.80 ms, P = 0.011), which was prevented by KN-93, a CaMKII inhibitor. Increase in Ca 2+ transients and shortening of Ca 2+ transient duration by isoproterenol were similarly observed in both animals, which was not affected by apamin. Apamin reduced the isoproterenol-induced SVAs and maximal slope of action potential duration restitution curve specifically in SHRs. In Kamada et al., Page 3 conclusion, β-adrenoreceptor stimulation creates arrhythmogenic substrates via the CaMKII-dependent activation of SK channels in cardiac hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.