Second moments of mode amplitudes at fixed frequency as a function of separations in mode number, time, and horizontal distance are investigated using mode-based transport equations and Monte Carlo simulation. These second moments are used to study full-field acoustic coherence, including depth separations. Calculations for low-order modes between 50 and 250 Hz are presented using a deep-water Philippine Sea environment. Comparisons between Monte Carlo simulations and transport theory for time and depth coherence at frequencies of 75 and 250 Hz and for ranges up to 500 km show good agreement. The theory is used to examine the accuracy of the adiabatic and quadratic lag approximations, and the range and frequency scaling of coherence. It is found that while temporal coherence has a dominant adiabatic component, horizontal and vertical coherence have more equal contributions from coupling and adiabatic effects. In addition, the quadratic lag approximation is shown to be most accurate at higher frequencies and longer ranges. Last the range and frequency scalings are found to be sensitive to the functional form of the exponential decay of coherence with lag, but temporal and horizontal coherence show scalings that fall quite close to the well-known inverse frequency and inverse square root range laws.
Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett-Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty.
Low frequency underwater sound propagation over ranges of 3.5 megameters or more has a complicated multipath arrival structure with early steep angle-arrivals, followed by an energetic finale composed of the lower order acoustic modes. Internal waves produce time-varying multipath and induce frequency-selective fading in the received signals. The low mode arrivals are strongly affected by internal waves, making it difficult to obtain precise travel time measurements for these signals. An equalizer along with suitable spatial filters, mitigates the multipath of the lower order modes. The Signal to Noise Ratio (SNR) measured at the output of the equalizer is used as an observable to localize modes, make time of arrival (TOA) measurements and measure the multipath spread of the modes. Results for the new mode equalizer on a simulated channel are presented. The mode equalizer is also tested on one of the North Pacific Acoustic Laboratory (NPAL) receptions.
In 2012, during two separate week-long deployments, underwater gliders outfitted with external hydrophones profiled the upper 100-200 m of the Monterey Bay. The environment contained various noises made by marine mammals, ships, winds, and earthquakes. Unlike hydrophone receivers moored to a fixed location, moving gliders measure noise variability across a wide terrain. However, underwater mobile systems have limitations such as instrument and flow noise, that are undesired. In order to estimate the system noise level, the hydrophones on the gliders had different gain settings on each deployment. The first deployment used a 0 dB gain during which the ambient noise recordings were dominated by the glider. The second used two hydrophones, one with a 0 dB gain and the other with 20 dB. Apart from system sounds, the higher-gain hydrophone also recorded far-away sources such as whales and ships. The noise recordings are used to estimate the spectrograms across depth and record time. The spectrograms are integrated with the glider engineering data to estimate histograms of noise power as a function of depth and glider velocity. The statistics from the two different deployments are compared to discuss the value of gliders with external hydrophones in ambient noise studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.