This paper describes the development of continuous-time and discrete-time signals and systems concept inventory exams for undergraduate electrical engineering curricula. Both exams have twenty-five multiple choice questions to assess students' understanding of core concepts in these courses. The questions require little or no computation, and contain incorrect answers that capture common student misconceptions. The design of both exams is discussed, as are ongoing studies evaluating the exams at four campuses. Preliminary results from administering the continuous-time exam as a pre-test and post-test indicate a normalized gain of 0.24 ± 0.08 for traditional lecture courses, consistent with reported results for the Force Concept Inventory exam in lecture courses for freshman physics. 1
A coprime sensor array (CSA) is a non-uniform linear array obtained by interleaving two uniform linear arrays (ULAs) that are undersampled by coprime factors. A CSA provides the resolution of a fully populated ULA of the same aperture using fewer sensors. However, the peak side lobe level in a CSA is higher than the peak side lobe of the equivalent full ULA with the same resolution. Adding more sensors to a CSA can reduce its peak side lobe level. This paper derives analytical expressions for the number of extra sensors to be added to a CSA to guarantee that the CSA peak side lobe height is less than that of the full ULA with the same aperture. The analytical expressions are derived and compared for the uniform, Hann, Hamming, and Dolph-Chebyshev shadings.
This article analyzes the coherence of low-mode signals at ranges of 3515 and 5171 km using data from the Acoustic Thermometry of Ocean Climate (ATOC) and Alternate Source Test (AST) experiments. Vertical line arrays at Hawaii and Kiritimati received M-sequences transmitted from two sources: the 75-Hz bottom-mounted ATOC source on Pioneer Seamount and the near-axial dual-frequency (28/84 Hz) AST source deployed nearby. This study demonstrates that the characteristics of the mode signals at 5171-km range are quite similar to those at 3515-km range. At 75 Hz the mode time spreads are on the order of 1.5 s, implying a coherence bandwidth of 0.67 Hz. The time spread of the 28-Hz signals is somewhat lower, but these signals show significantly less frequency-selective fading than the 75-Hz signals, suggesting that at the lower frequency the multipaths are temporally resolvable. Coherence times for mode 1 at 75 Hz are on the order of 8 min for the 3515-km range and 6 min for 5171-km range. At 28 Hz mode 1 is much more stable, with a magnitude-squared coherence of greater than 0.6 for the 20-min transmission period.
In 1995-1996 the Acoustic Thermometry of Ocean Climate (ATOC) experiment provided an opportunity to study long-range broadband transmissions over a series of months using mode-resolving vertical arrays. A 75-Hz source off the California coast transmitted broadband pulses to receiving arrays in the North Pacific, located at ranges of 3515 and 5171 km. This paper develops a short-time Fourier transform (STFT) processor for estimating the signals propagating in the lowest modes of the ocean waveguide and applies it to analyze data from the ATOC experiment. The STFT provides a convenient framework for examining processing issues associated with broadband signals. In particular, this paper discusses the required frequency resolution for mode estimation, analyzes the broadband performance of two standard modal beamforming algorithms, and explores the time/frequency tradeoffs inherent in broadband mode processing. Short-time Fourier analysis of the ATOC receptions at 3515 km reveals a complicated arrival structure in modes 1-10. This structure is characterized by frequency-selective fading and a high degree of temporal variability. At this range the first ten modes have equal average powers, and the magnitude-squared coherence between the modes is effectively zero. The coherence times of the peaks in the STFT mode estimates are on the order of 5.5 min. An analysis of mean arrival times yields modal dispersion curves and indicates that there are statistically significant shifts in travel time over 5 months of ATOC transmissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.