The solder joint reliability of ceramic chip resistors assembled to laminate substrates has been a long time concern for systems exposed to harsh environments. In this work, the thermal cycling reliability of several 2512 chip resistor lead‐free solder joint configurations has been investigated. In an initial study, a comparison has been made between the solder joint reliabilities obtained with components fabricated with both tin‐lead and pure tin solder terminations. In the main portion of the reliability testing, two temperature ranges (−40‐125°C and −40‐150°C) and five different solder alloys have been examined. The investigated solders include the normal eutectic Sn‐Ag‐Cu (SAC) alloy recommended by earlier studies (95.5Sn‐3.8Ag‐0.7Cu), and three variations of the lead‐free ternary SAC alloy that include small quaternary additions of bismuth and indium to enhance fatigue resistance.
Summary
Major issues in designing low‐power high‐speed VLSI circuits are propagation delay, power consumption, and noise tolerance. This paper describes fin field‐effect transistor (FinFET) technology for the design of low‐power VLSI circuits. FinFET uses two gates (front and back) in place of a single gate as in complementary metal‐oxide–semiconductor (CMOS) technology for better control of the channel. A new technique foot driven stack transistor domino logic (FDSTDL) is proposed for designing domino logic circuits in order to reduce leakage power and propagation delay. In this paper, 2‐, 4‐, 8‐, and 16‐input domino OR gates are designed and simulated using existing and proposed techniques in CMOS and FinFET technology. Simulation is done on the 32 nm predictive technology model (PTM) node using HSPICE on a direct current (DC) supply voltage of 0.9 V. The proposed circuit is simulated in two modes of FinFET, short gate (SG) mode, and low power (LP) mode. The proposed technique shows maximum power reduction of 43.45% in SG mode in comparison with conditional stacked keeper domino logic (CSK‐DL) technique and maximum delay reduction of 38.66% in LP mode in comparison with coarse‐mesh finite difference (CMFD) technique at a frequency of 200 MHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.