The present research reports the influences of variant phenolic resin concentrations on the thermo-mechanical and ablation characteristics of ethylene propylene diene monomer (EPDM) elastomer. Backface temperature acclivity (BTA), charring rates, and insulation indexes were executed for the fabricated composite specimens. It was noticed that BTA was enhanced while linear/radial/mass ablation rates were significantly diminished with increasing concentration of phenolic resin (PR) in base matrix (elastomeric polymer). The composite (30wt%PR/EPDM) has 25% high thermal endurance compared to virgin EPDM composite. Thermal conductivity was increased with increasing PR to EPDM ratio. PR incorporation has remarkably enhanced the ultimate tensile strength of the EPDM elastomer. An efficient improvement in elastomeric hardness was also observed with increasing PR contents in EPDM matrix. Scanning Electron Microscopy (SEM) results showed the porosity generation and polymer melting during ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.