Parameter fine tuning is a transfer learning approach whereby learned parameters from pre-trained source network are transferred to the target network followed by fine-tuning. Prior research has shown that this approach is capable of improving task performance. However, the impact of the ImageNet pre-trained classification layer in parameter finetuning is mostly unexplored in the literature. In this paper, we propose a fine-tuning approach with the pre-trained classification layer. We employ layer-wise fine-tuning to determine which layers should be frozen for optimal performance. Our empirical analysis demonstrates that the proposed fine-tuning performs better than traditional fine-tuning. This finding indicates that the pre-trained classification layer holds less categoryspecific or more global information than believed earlier. Thus, we hypothesize that the presence of this layer is crucial for growing network depth to adapt better to a new task. Our study manifests that careful normalization and scaling are essential for creating harmony between the pre-trained and new layers for target domain adaptation. We evaluate the proposed depth augmented networks for fine-tuning on several challenging benchmark datasets and show that they can achieve higher classification accuracy than contemporary transfer learning approaches.
Domain adaptation aims to transfer knowledge from a domain with adequate labeled samples to a domain with scarce labeled samples. Prior research has introduced various open set domain adaptation settings in the literature to extend the applications of domain adaptation methods in realworld scenarios. This paper focuses on the type of open set domain adaptation setting where the target domain has both private ('unknown classes') label space and the shared ('known classes') label space. However, the source domain only has the 'known classes' label space. Prevalent distribution-matching domain adaptation methods are inadequate in such a setting that demands adaptation from a smaller source domain to a larger and diverse target domain with more classes. For addressing this specific open set domain adaptation setting, prior research introduces a domain adversarial model that uses a fixed threshold for distinguishing known from unknown target samples and lacks at handling negative transfers. We extend their adversarial model and propose a novel adversarial domain adaptation model with multiple auxiliary classifiers. The proposed multi-classifier structure introduces a weighting module that evaluates distinctive domain characteristics for assigning the target samples with weights which are more representative to whether they are likely to belong to the known and unknown classes to encourage positive transfers during adversarial training and simultaneously reduces the domain gap between the shared classes of the source and target domains. A thorough experimental investigation shows that our proposed method outperforms existing domain adaptation methods on a number of domain adaptation datasets. Index Terms-Open set domain adaptation, adversarial domain networks, multi-classifier based weighting module. I. INTRODUCTIOND EEP learning models for computer vision tasks usually require a massive amount of labeled data entailing highly laborious work for annotating data [1], [2], [3], [4]. An alternative is to use labeled data from a related (source) domain to boost the performance of the model in a target domain. However, as the source and target data may have domain gaps such as different illumination set-ups, and perspectives, synthesized data by using different variants of sensors, the performance of this approach may suffer. Existing domain adaptation (DA) methods aim to decrease the above-mentioned domain divergences either by using distribution matching methods [5], [6], [7], [8] or by transforming samples from one domain to another through generative models [9
Embedding learning (EL) and feature synthesizing (FS) are two of the popular categories of fine-grained GZSL methods. EL or FS using global features cannot discriminate fine details in the absence of local features. On the other hand, EL or FS methods exploiting local features either neglect direct attribute guidance or global information. Consequently, neither method performs well.In this paper, we propose to explore global and direct attribute-supervised local visual features for both EL and FS categories in an integrated manner for finegrained GZSL. The proposed integrated network has an EL sub-network and a FS sub-network. Consequently, the proposed integrated network can be tested in two ways. We propose a novel two-step dense attention mechanism to discover attribute-guided local visual features. We introduce new mutual learning between the sub-networks to exploit mutually beneficial information for optimization. Moreover, we propose to compute source-target class similarity based on mutual information and transfer-learn the target classes to reduce bias towards the source domain during testing. We demonstrate that our proposed method outperforms contemporary methods on benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.