Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive function.
Fifty-nine lipase-producing fungal strains were isolated from Brazilian savanna soil by employing enrichment culture tecniques. An agar plate medium containing bile salts and olive oil emulsion was employed for isolating and growing fungi in primary screening assay. Twenty-one strains were selected by the ratio of the lipolytic halo radius and the colonies radius. Eleven strains were considered good producers under conditions of submerged liquid fermentation (shaken cultures) and solid-state fermentation. The most productive strain, identified as Colletotrichum gloesporioides, produced 27,700 U/l of lipase under optimized conditions and the crude lipase preparation was capable of hydrolysing a broad range of substrates including lard, natural oils and tributyrin.
1 The aim of the present experiments was to investigate the pharmacological action of a toxin from the spider Phoneutria nigriventer, Tx3-3, on the function of calcium channels that control exocytosis of synaptic vesicles. 2 Tx3-3, in con®rmation of previous work, diminished the intracellular calcium increase induced by membrane depolarization with KCl (25 mM) in rat cerebrocortical synaptosomes. The toxin was very potent (IC 50 0.9 nM) at inhibiting calcium channels that regulate calcium entry in synaptosomes. In addition, Tx3-3 blocked the exocytosis of synaptic vesicles, as measured with the¯uorescent dye FM1-43. 3 Using o-toxins that interact selectively with distinct neuronal calcium channels, we investigated whether the target of Tx3-3 overlaps with known channels that mediate exocytosis. The results indicate that the main population of voltage-sensitive calcium channels altered by Tx3-3 can also be inhibited by o-agatoxin IVA, an antagonist of P/Q calcium channels. o-conotoxin GVIA, which inhibits N type calcium channels did not decrease signi®cantly the entry of calcium or exocytosis of synaptic vesicles in depolarized synaptosomes. 4 It is concluded that Tx3-3 potently inhibits o-agatoxin IVA-sensitive calcium channels, which are involved in controlling exocytosis in rat brain cortical synaptosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.