A new method for automatic detection of section boundaries and extraction of key sentences from lecture audio archives is proposed. The method makes use of 'discourse markers' (DMs), which are characteristic expressions used in initial utterances of sections, together with pause and language model information. The DMs are derived in a totally unsupervised manner based on word statistics. An experimental evaluation using the Corpus of Spontaneous Japanese (CSJ) demonstrates that the proposed method provides better indexing of section boundaries compared with a simple baseline method using pause information only, and that it is robust against speech recognition errors. The method is also applied to extraction of key sentences that can index the section topics. The statistics of the presumed DMs are used to define the importance of sentences, which favors potentially section-initial ones. The measure is also combined with the conventional tf-idf measure based on content words. Experimental results confirm the effectiveness of using the DMs in combination with the keyword-based method. The paper also describes a statistical framework for transforming raw speech transcriptions into the document style for defining appropriate sentence units and improving readability.
Automatic extraction of key sentences from lecture audio archives is addressed. The method makes use of the characteristic expressions used in initial utterances of sections, which are defined as discourse markers and derived in a totally unsupervised manner based on word statistics. The statistics of the presumed discourse markers are then used to define the importance of the sentences. It is also combined with the conventional tf-idf measure of content words. Experimental results using a large corpus of lectures confirm the effectiveness of the method based on the discourse markers and its combination with the keyword-based method. It is also shown that the method is robust against ASR errors and sentence segmentation accuracy is more vital. Thus, we also enhance the segmentation by incorporating prosodic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.