Oxidative stress is a consequence of the use of oxygen in aerobic respiration by living organisms and is denoted as a persistent condition of an imbalance between the generation of reactive oxygen species (ROS) and the ability of the endogenous antioxidant system (AOS) to detoxify them. The oxidative stress theory has been confirmed in many animal studies, which demonstrated that the maintenance of cellular homeostasis and biomolecular stability and integrity is crucial for cellular longevity and successful aging. Mitochondrial dysfunction, impaired protein homeostasis (proteostasis) network, alteration in the activities of transcription factors such as Nrf2 and NF-κB, and disturbances in the protein quality control machinery that includes molecular chaperones, ubiquitin-proteasome system (UPS), and autophagy/lysosome pathway have been observed during aging and age-related chronic diseases. The accumulation of ROS under oxidative stress conditions results in the induction of lipid peroxidation and glycoxidation reactions, which leads to the elevated endogenous production of reactive aldehydes and their derivatives such as glyoxal, methylglyoxal (MG), malonic dialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) giving rise to advanced lipoxidation and glycation end products (ALEs and AGEs, respectively). Both ALEs and AGEs play key roles in cellular response to oxidative stress stimuli through the regulation of a variety of cell signaling pathways. However, elevated ALE and AGE production leads to protein cross-linking and aggregation resulting in an alteration in cell signaling and functioning which causes cell damage and death. This is implicated in aging and various age-related chronic pathologies such as inflammation, neurodegenerative diseases, atherosclerosis, and vascular complications of diabetes mellitus. In the present review, we discuss experimental data evidencing the impairment in cellular functions caused by AGE/ALE accumulation under oxidative stress conditions. We focused on the implications of ALEs/AGEs in aging and age-related diseases to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis for the discovery of relevant therapeutic agents.
Background: Obesity and cancer are recognized worldwide health threats. While there is no reported causal relationship, the increasing frequency of both conditions results in a higher incidence of obese patients who are being treated for cancer. Physiological data indicate that there is a relationship between obesity and susceptibility to pain; however, currently, there are no specific pharmacological interventions. Objective: To evaluate the self-reported intensity of postoperative pain in obese and nonobese lung cancer who receive either thoracotomy or video-assisted thoracic surgery (VATS) surgical therapy. Material and Methods: In 50 obese [mean body mass index (BMI) of 34.1 ± 3.2 kg/m 2 ] and 62 nonobese (mean BMI of 24.9 ± 3 kg/m 2 ) lung cancer patients, the intensity of pain was estimated every 4 h using a visual analog scale (VAS, 0 indicating no pain and 10 indicating “worst imaginable pain”) beginning shortly after surgery (Day O) and continuing until the day of discharge (Day D). Results: The self-reported pain was more severe in obese than in nonobese patients, both at the time of the operation [Day O (4.5 ± 1.2 vs 3.4 ± 1.1; p < 0.0001)] and at the day of discharge [Day D (3.9 ± 1.4 vs 2.6 ± 0.9, p < 0.0001)]. This finding was consistent both in the patients after thoracotomy and after video-assisted thoracic surgery (VATS, p < 0.0001). The patients with severe pain shortly after surgery (VAS score >4) had significantly higher BMI (31.8 ± 5.6 kg/m 2 vs 28.8 ± 5.2 kg/m 2 , p < 0.01) and were hospitalized longer than the remaining patients (13.0 ± 13.6 days vs 9.5 ± 3.6 days, p < 0.05). Conclusion: The reported perception of pain in obese lung cancer patients is greater than in nonobese patients undergoing the same thoracic surgery. In obese patients, severe pain persisted longer. Pain management is an important consideration in the postoperative care of lung cancer patients, even more so with obese patients.
Background:Resistance toward chemotherapeutics is one of the main obstacles on the way to effective cancer treatment. Personalization of chemotherapy could improve clinical outcome. However, despite preclinical significance, most of the potential markers have failed to reach clinical practice partially due to the inability of numerous studies to estimate the marker’s impact on resistance properly.Objective:The analysis of drug resistance mechanisms to chemotherapy in cancer cells, and the proposal of study design to identify bona fide markers.Methods:A review of relevant papers in the field. A PubMed search with relevant keywords was used to gather the data. An example of a search request: drug resistance AND cancer AND paclitaxel.Results:We have described a number of drug resistance mechanisms to various chemotherapeutics, as well as markers to underlie the phenomenon. We also proposed a model of a rational-designed study, which could be useful in determining the most promising potential biomarkers.Conclusion:Taking into account the most reasonable biomarkers should dramatically improve clinical outcome by choosing the suitable treatment regimens. However, determining the leading biomarkers, as well as validating of the model, is a work for further investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.