Cardiovascular diseases are a growing epidemiological burden in today's society. A great deal of effort has been made to find solutions able to perform non-invasive monitoring and early diagnosis of such pathologies. The pulse wave velocity and certain waveform characteristics constitute some of the most important cardiovascular risk indicators. Optical sensors are an attractive instrumental solution in this kind of time assessment applications due to their truly non-contact operation capability and better resolution than commercial devices. This study consisted on the experimental validation and a clinical feasibility for a non-invasive and multi-parametric optical system for evaluation of the cardiovascular condition. Two prototypes, based on two different types of photodetectors (planar and avalanche photodiode) were tested in a small group of volunteers, and the main hemodynamic parameters were measured, such as pulse wave velocity and indexes of pulse waveform analysis: the Augmentation Index, Subendocardial Viability Ratio and Ejection Time Index. The probes under study proved to be able to measure the pulse pressure wave in a reliable manner at the carotid site, and demonstrated the consistency of the parameters determined using dedicated algorithms. This study represents a preliminary evaluation of an optical system devoted to the clinical evaluation environment. Further development to take this system to a higher level of clinical significance, by incorporating it in a multicenter study, is currently underway.
The pulse pressure waveform has, for long, been known as a fundamental biomedical signal and its analysis is recognized as a non-invasive, simple, and resourceful technique for the assessment of arterial vessels condition observed in several diseases. In the current paper, waveforms from non-invasive optical probe that measures carotid artery distension profiles are compared with the waveforms of the pulse pressure acquired by intra-arterial catheter invasive measurement in the ascending aorta. Measurements were performed in a study population of 16 patients who had undergone cardiac catheterization. The hemodynamic parameters: area under the curve (AUC), the area during systole (AS) and the area during diastole (AD), their ratio (AD/AS) and the ejection time index (ETI), from invasive and non-invasive measurements were compared. The results show that the pressure waveforms obtained by the two methods are similar, with 13% of mean value of the root mean square error (RMSE). Moreover, the correlation coefficient demonstrates the strong correlation. The comparison between the AUCs allows the assessment of the differences between the phases of the cardiac cycle. In the systolic period the waveforms are almost equal, evidencing greatest clinical relevance during this period. Slight differences are found in diastole, probably due to the structural arterial differences. The optical probe has lower variability than the invasive system (13% vs 16%). This study validates the capability of acquiring the arterial pulse waveform with a non-invasive method, using a non-contact optical probe at the carotid site with residual differences from the aortic invasive measurements.
A new type of optical probe based on laser Doppler self-mixing technology, for a truly non-contact measurement in a single location, and extraction of the temporal features of the distension wave in the arterial wall, was developed. The monitoring of temporal features allows the assessment of cardiovascular function when measurement is carried out at the carotid artery. An algorithm based on the short-time Fourier transform and empirical mode decomposition was applied to the test setup self-mixing signals for the determination of waveform features, with an accuracy of a few milliseconds and a root mean square error less than 3 ms. In vivo testing signals show great consistency in the measured pulse pressure waveform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.