Combination therapy is becoming imperative for the treatment of many cancers, as it provides a higher chance of avoiding drug resistance and tumor recurrence. Among the resistance-conferring factors, the tumor microenvironment plays a major role, and therefore, represents a viable target for adjuvant therapeutic agents. Thus, hypoxia and extracellular acidosis are known to select for the most aggressive and resilient phenotypes and build poorly responsive regions of the tumor mass. Carbonic anhydrase (CA, EC 4.2.1.1) IX isoform is a surficial zinc metalloenzyme that is proven to play a central role in regulating intra and extracellular pH, as well as modulating invasion and metastasis processes. With its strong association and distribution in various tumor tissues and well-known druggability, this protein holds great promise as a target to pharmacologically interfere with the tumor microenvironment by using drug combination regimens. In the present review, we summarized recent publications revealing the potential of CA IX inhibitors to intensify cancer chemotherapy and overcome drug resistance in preclinical settings.
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
A hypothesis that simultaneous targeting cancer-related carbonic anhydrase hCA IX and hCA XII isoforms (whose overexpression is a cancer cell's defence mechanism against hypoxia) along with thioredoxin reductase (overexpressed in cancers as a defence against oxidative stress) may lead to synergistic antiproliferative effects was confirmed by testing combinations of the two inhibitor classes against pancreatic cancer cells (PANC-1). Combining both pharmacophoric motifs within one molecule led to a sharp increase of cytotoxicity. This preliminary observation sets the ground for a fundamentally new approach to anticancer agent design.
Relying on a recently suggested protocol that furnishes convenient access to variously substituted 2-pyridyl ureas, twelve hitherto unknown Cu(II) complexes have been synthesized in the present work and their structures were evaluated by elemental analysis, HRMS, IR spectroscopy, and X-ray diffraction study. Two structural motifs ([Cu(L)2Cl]+[Cl]− or (Cu(L)2Cl2) depending on the substitution pattern on the 2-pyridine fragment were revealed. In addition, antiproliferative action of the obtained compounds have been investigated against lung cancer cell lines (A549, NCI-H460, NCI-H1975), and healthy WI-26 VA4 cells were used to monitor non-specific cytotoxicity. Two nitro-group substituted complexes Cu(U3)2Cl2 (IC50 = 39.6 ± 4.5 μM) and Cu(U11)2Cl2 (IC50 = 33.4 ± 3.8 μM) demonstrate enhanced activity against the drug resistant NCI-H1975 cells with moderate selectivity toward normal WI-26 VA4 cells. The antiproliferative mechanism of cell death underlying the growth inhibitory effect of the synthesized complexes was studied via additional experiments, including the cell cycle analysis and the apoptosis induction test. Reassuringly, certain 2-pyridyl urea-based Cu(II) complexes exerted cell line-specific antiproliferative effect which renders them valuable starting points for further unveiling the anticancer potential of this class of coordination compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.